高一数学(311随机事件的概率)_第1页
高一数学(311随机事件的概率)_第2页
高一数学(311随机事件的概率)_第3页
高一数学(311随机事件的概率)_第4页
高一数学(311随机事件的概率)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、随机事件概率论起源的故事

概率论始于研究赌博的机遇问题:在17世纪,法国有一个很有名的赌徒,名字叫默勒。一天,他和侍卫官赌掷骰子,两人都下了30枚金币。约定如果默勒先掷出3次6点,就可以赢得60枚金币,如果侍卫官先掷出3次4点,就可以赢得60枚金币。当默勒掷出2次6点,侍卫官掷出1次4点时,意外的事发生了,侍卫官接到通知,必须马上回去陪国王接见外宾。赌博无法继续了,但是如何分配两人下的赌注呢?默勒认为自己应该获得全部的四分之三,侍卫官认为自己应该获得全部的三分之一。两人争论不休,最后默勒写信询问法国著名数学家帕斯卡,帕斯卡觉得很有意思,于是于1654年7月29日写信给费尔马,和费尔马展开了通信讨论,最终奠定了一门数学分支——概率论。随着长期的研究,逐渐形成了概率论理论框架。现代统计方法便有了比较坚实的理论基础。

听故事大唐勉玉公主驸马赵捍臣因过失之罪被宰相张闻天设陷,欲置于死地,双方各执一词,引发了历史上著名的抓阄定生死的奇案。皇上下令,让宰相张闻天做两个阄,一张写“生”,一张写“死”,让驸马抓阄来决定自己的命运…跟我斗,哼!这下你完了吧。哈哈…两张一定都是死,我命完也!死死

那个奸臣一定写了两个“死”,不公平,我要上奏父皇。让我来写,驸马就有救了…生生次日,公主和宰相力争主写权,最终皇帝把此大权留给了自己…你知道要是宰相写驸马会怎样?你知道要是公主写驸马会怎样?你知道要是皇帝写驸马会怎样?

宰相没能如愿以偿地写上他想写的内容,公主也没有。皇帝是公平的,最终驸马幸运的抓到了“生”……在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:

另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法预先确定的,这类现象称为随机现象.

一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;

在一定条件S下,可能发生也可能不发生的事件,叫相对条件S随机事件。在条件S下,一定不会发生的事件,叫做相对条件S的不可能事件。

在条件S下,一定会发生的事件,叫做相对于条件S的必然事件。随机事件:必然事件:不可能事件:事件的表示:以后我们用A、B、C等大写字母表示事件。读事件A,事件B.在数学中,我们把自然界和生活中的确定性现象和不确定性现象称为事件,事件的类型如下:必然事件与不可能事件统称确定事件从箱子中任意摸出一个红球,…?下列事件,哪些是必然事件?哪些是不可能事件?哪些是随机事件?

木柴燃烧,产生热量明天,地球还会转动在00C下,这些雪融化实心铁块丢入水中,铁块浮起转盘转动后,指针指向黄色区域这两人各买1张彩票,她们中奖了随堂练习指出下列事件是随机事件、必然事件还是不可能事件,并说明理由?(1)在地球上,抛出的篮球会下落;(2)随意翻一下日历,翻到的日期为2月31日;(3)乔丹罚球,十投十中;(4)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(5)任意买一张电影票,座位号是偶数;(6)抛一枚硬币,正面朝上;(必然事件)(随机事件)(随机事件)(不可能事件)(随机事件)(随机事件)(7)条件:某运动员在学校操场上掷一次铁饼事件A:铁饼落在距投掷线40米处;事件B:铁饼飞离地球;事件C:铁饼砸入地下100米处;事件D:铁饼投出后落在中国境内。现在有10件相同的产品,其中8件是正品,2件是次品。我们要在其中任意抽出3件。那么,我们可能会抽到怎样的样本?可能:A、三件正品B、二正一次C、一正二次结论1:必然有一件正品结论2:不可能抽到三件次品(随机事件)思考(必然事件)二、随机事件的概率在数学中为了探索随机现象的规律性,需要对随机现象进行观察.我们把观察随机现象或为了某种目的而进行的实验统称为试验.试验中出现的结果就是事件.

概率同学们在初中就学习过,它是研究随机现象的数学概念。

所谓概率是指用数来表示随机现象发生的可能性大小注意区别“试验”与“事件”1.掷10次质地均匀的硬币,硬币落地时有5次正面向上.这里一次试验指什么?做了几次试验?发生的事件是什么?答:掷一次硬币就是一次试验,共做了10次试验.设事件A为“正面朝上”,事件B为“反面朝上”。事件A发生了5次,事件B也发生了5次。2.箱中有a个正品,b个次品,(a+b>3)从箱中随机连续抽取3次,每次取1个,取出后不放回,取出的3个全是正品。这里一次试验指什么?做了几次试验?发生的事件是什么?答:抽取一次产品,就是一次试验。共做了3次试验。发生的事件是:事件A:取出3件正品。可能发生的其它事件,事件B:取出2正1次;事件C:取出1正2次;事件D:取出3件次品。1.每两人一组取一块硬币,做10次掷硬币的试验,1人掷,1人记录,将试验结果,填在表中:

2.下面是一组掷硬币的试验结果,你能从表中分析出什么结论:

将一枚硬币抛掷5次、50次、500次,各做7遍,观察正面出现的次数及频率.3.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:

频数:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A的频数,频率:事件A出现的比例为事件A出现的频率。概率:随着试验次数的增加,频率趋向于一个稳定值,这个稳定值叫事件A的概率,用P(A)表示。对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。1.概率的定义是什么?2.频率与概率有什么区别和联系?事件A发生频率是不是不变的?事件A的概率是不是不变的?它们之间有什么区别与联系?①频率是随机的,在试验之前不能确定;②概率是一个确定的数,与每次试验无关;③随着试验次数的增加,频率会越来越接近概率;④频率是概率的近似值,概率是频率的稳定值;概率的取值范围必然事件的概率是1,不可能事件的概率是0。随机事件的概率是(0,1)区间内的一个确定数。概率接近于0的事件称为小概率事件,概率接近于1的事件称为大概率事件。小概率事件很少发生,大概率事件经常发生。1.下列事件中不可能事件是()A.三角形的内角和为180°B.三角形中大边对的角大,小边对的角小C.锐角三角形中两个内角的和小于90°D.三角形中任意两边的和大于第三边2.在12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件的必然事件是(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论