光纤通信技术:Chapter 2 Optical Signal Generation_第1页
光纤通信技术:Chapter 2 Optical Signal Generation_第2页
光纤通信技术:Chapter 2 Optical Signal Generation_第3页
光纤通信技术:Chapter 2 Optical Signal Generation_第4页
光纤通信技术:Chapter 2 Optical Signal Generation_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter2OpticalSignalGenerationVocabularyChapter22SOEI,HUSTOpticaltransmitter:光发射机LED:发光二极管LD:激光二极管Spontaneousemission:自发辐射Stimulatedemission:受激发射Stimulatedabsorption:受激吸收Boltzmanstatistics:玻尔兹曼统计分布Thermalequilibrium:热平衡Spectraldensity:光谱密度Populationinversion:粒子数反转Fermi-Diracdistribution:费米狄拉克分布Conductionband:导带Valenceband:价带Forward-biased:正向偏置Junction:结Fermilevel:费米能级Bandgap:带隙Heavydoping:重掺杂Homojunction:同质结Heterojunction:异质结Doubleheterostructure:双异质结recombination:复合Claddinglayer:包层Augerrecombination:俄歇复合Kineticenergy:动能Nonradiativerecombination:非辐射复合Surfacerecombination:表面复合Internalquantumefficiency:内量子效率Directbandgap:直接带隙Indirectbandgap:非直接带隙Carrierlifetime:载流子寿命Latticeconstant:晶格常数Ternaryandquaternarycompound:三元系和四元系化合物Substrate:衬底LPE:液相外延VPE:汽相外延MBE:分子束外延MOCVD:改进的化学汽相沉积MQW:多量子阱Electron-holepairs电子空穴对Externalquantumefficiency外量子效率Chapter23SOEI,HUSTFresneltransmissivity菲涅耳透射率Power-conversionefficiency功率转换效率Wall-plugefficiency电光转换效率Responsivity响应度Rateequation速率方程Surface-emitting表面发射Beamdivergence光束发散Edge-emitting边发射Resonantcavity谐振腔Gaincoefficient增益系数Differentialgain微分增益Laserthreshold激光阈值Thresholdcurrent阈值电流Groupindex群折射率Externalcavity外腔VCSEL:verticalcavitysurface-emittinglasers垂直腔表面发射激光器Photonlifetime光子寿命Slopeefficiency斜率效率Differentialquantumefficiency微分量子效率Linewidthenhancementfactor线宽加强因子Broadarea宽面Stripegeometry条形Diffusion扩散Index-guided折射率导引Ridgewaveguidelaser脊波导激光器Buriedheterostructure掩埋异质结Lateral侧向Transverse横向SLM:SingleLongitudinalmode单纵模MSR:Modesuppressionratio模式抑制比DFB:DistributedFeedback分布式反馈Braggdiffraction布拉格衍射Braggcondition布拉格条件DBR:distributedBraggreflector分布式布拉格反射器Phase-shiftedDFBlaser相移DFB激光器Gaincoupled增益耦合Coupledcavity耦合腔Characteristicstemperature特征温度OOK开关键控DPSK差分相移键控QPSK正交相移键控QAM正交幅度调制Dualpolarization双偏振态(偏振复用)Chapter24SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter25SOEI,HUST2.1.1SchematicDiagramofOpticalTransmittersBinarytosingleCoding/linecodingModulatorOpticalSourceDrivingCircuitPCMChannelcouplerOpticalsignaloutputChapter26SOEI,HUSTBiasedcurrentModulationcurrent(≥10Gbit/s)ModulationcurrentBiasedcurrent(≤2.5Gbit/s)DirectModulationExternalModulationChapter27SOEI,HUSTstability:power&wavelengthreliability:>25years(PouttoPout/2)smallemissiveareacompatiblewithfibercoredimensionsrightwavelengthrange0.85µm:GaAlAs/GaAs1.31µm,1.55µm:InP/InGaAsPnarrowlinewidth→dispersion,phasenoiseeasytorealizedirectmodulationhighefficiency&lowthreshold:MQW-LD,Ith~10mAMQWDFBLD2.1.2RequirementsforOpticalSourceChapter28SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter29SOEI,HUST1.ThreeFundamentalTransitionProcesses

SpontaneousEmission→LED

StimulatedEmission→LD,SOA

30-受激吸收.swf

→PIN,APD

LightEmission2.2.1EnergyBandsinSemiconductorStimulatedEmissionSpontaneousEmissionStimulatedAbsorptionChapter210SOEI,HUSTE2N2N1E1:spectraldensityInthermalequilibrium,accordingtoBoltzmannstatistics:kB:BoltzmannconstantT:absolutetemperatureAccordingtoPlanck’sformula:2.EmissionandAbsorptionRatesChapter211SOEI,HUSTvisibleornear-infraredregion,roomtemperatureN2>N1,Rstim>Rabs(populationinversion)Thermalequilibrium laseroperation ?Operationconditionforlaser:Externalpumpingsourceisneeded:injectioncurrent,pumpinglightetc.

Einstein’scoefficientsChapter212SOEI,HUST3.RecombinationbetweenElectronsandHolesEfc,EfvaretheFermilevelsinconductionbandandvalenceband,respectivelyTheoccupationprobabilityforelectronsintheconductionandvalencebandsisgivenbytheFermi-Diracdistributionsrespectively:Conductionandvalencebandsofasemiconductor.Chapter213SOEI,HUSTρcv:jointdensityofstates,whichdescribesthenumberofstatesperunitvolumeperunitenergyrangeEg:bandgapmr:reducedmassmc,mv:effectivemassesofelectrons&holesinconductionandvalencebands,respectivelyChapter214SOEI,HUSTpopulation-inversioncondition:inthermalequilibrium:pumpingenergyintosemiconductorbyinjectingcurrent:Togetlaseroutput,Chapter215SOEI,HUST2.2.2p-nJunctions1.TypeofSemiconductorIntrinsicsemiconductor:undoped,Fermilevelislyinginthemiddleofthebandgap.n-typesemiconductor:Fermilevelmovestowardtheconductionbandasthedopantconcentrationincreases.p-typesemiconductor:Fermilevelmovestowardthevalencebandasthedopantconcentrationincreases.Chapter216SOEI,HUSTinthermalequilibriumunderforwardbiased2.p-nJunctionsunderforwardbiased:built-inelectricfieldisreduceddiffusionofelectronsandholesacrossthejunctionelectronsandholesarepresentsimultaneouslyindepletionregiongeneratelightthroughspontaneousemissionorstimulatedemissioninthermalequilibrium:

theFermilevelmustbecontinuousacrossthep–njunctionachievedthroughdiffusionofelectronsandholesacrossthejunction.Chapter217SOEI,HUSTHomojunction:equalbandgapsthesamesemiconductormaterialwideregionforelectron-holerecombinationdifficulttoobtainhighcarrierdensityHeterojunction:differentbandgapsDouble-heterojunction:sandwichingathinlayerbetweenthep-typeandn-typelayers,andthebandgapofthesandwichlayerissmallerthanthelayerssurroundingit.3.Homojunction&HeterojunctionChapter218SOEI,HUSTEnergy-banddiagramof(a)homostructureand(b)double-heterostructurep–njunctionsinthermalequilibrium(top)andunderforwardbias(bottom).Chapter219SOEI,HUSTActivelayer:lightisgeneratedinsideitasaresultofelectron-holerecombinationsmallerbandgap→largerrefractiveindex→waveguide(1D)Heterojunction:confinementofcarriers&opticalfield0.85µm:cladding/active:GaAlAs/GaAs1.31µm,1.55µm:cladding/active:InP/InGaAsPSimultaneousconfinementofchargecarriersandopticalfieldinadoubleheterostructuredesign.Chapter220SOEI,HUST1.Electron-holeRecombinationDefects&surfacerecombinationAugerNonradiativerecombination2.2.3NonradiativeRecombinationChapter221SOEI,HUST2.InternalQuantumEfficiencyRrr:radiativerecombinationrateRnr:nonradiativerecombinationrateRtot:totalrecombinationrateτ:recombinationtimeNonradiativerecombination,especiallyAugerrecombination(temperaturedependent)isharmfultodevices!positivefeedback

Chapter222SOEI,HUSTE0E0k1k2direct-bandgap(GaAs,InP)indirect-bandgap(Si,Ge)3.CarrierLifetimeA:defects&surfaceB:spontaneousradiationC:Augercoefficientk1=k2Chapter223SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter224SOEI,HUST2.3.1AmplitudeandPhaseConditionsAdvantages(comparedtoLED):emittingrelativelyhighpower(to100mW)narrowangularspreadnarrowspectralwidthdirectmodulationathighfrequency(to10GHz)1.ComponentsandAdvantagesofLDs:Components:Chapter225SOEI,HUSTPeakgainofmedium:

when :differentialgain(gaincrosssection) :injectedcarrierdensity :transparentcarrierdensity:thresholdcarrierdensityNTisequaltoNth?2.OpticalGainChapter226SOEI,HUSTGainspectrumofa1.3-μmInGaAsPlaseratseveralcarrierdensitiesN.Variationofpeakgaingp

withN.Thedashedlineshowsthequalityofalinearfitinthehighgainregion.Chapter227SOEI,HUSTFeedbackR1R2n0=1n3.FeedbackandLaserThresholdChapter228SOEI,HUSTThreshold

modelofLDsChapter229SOEI,HUSTAmplitudeconditionPhaseconditionspacingbetweenoscillatingfrequenciesoscillatingfrequenciesthresholdgainMLMChapter230SOEI,HUST2.3.2LDStructures1.Broad-areaLDsAbroad-areasemiconductorlaser.Theactivelayer(hatchedregion)issandwichedbetweenp-typeandn-typecladdinglayersofahigher-bandgapmaterial.Lightconfinementmechanisminthedirectionperpendiculartothejunctionplaneintroducedbydoubleheterostructure

XYdistributioninnearfieldChapter231SOEI,HUSTnosuchlight-confinementmechanisminthelateraldirectionparalleltothejunctionplane.thelightgeneratedspreadsovertheentirewidthofthelaser.arelativelyhighthresholdcurrentandaspatialpatternthatishighlyellipticalandthatchangesinanuncontrollablemannerwiththecurrent.Spatialmodedistributioninfarfield?Chapter232SOEI,HUST2.StripeLDsGain-guidedsemiconductorlasersCrosssectionoftwostripe-geometrylaserstructuresusedtodesigngain-guidedsemiconductorlasersandreferredtoas(a)oxidestripeand(b)junctionstripe.

XYChapter233SOEI,HUSTsolvethelight-confinementproblembylimitingcurrentinjectionoveranarrowstripe.thespotsizeisstillnotstableasthelaserpowerisincreased.Chapter234SOEI,HUSTIndex-guidedsemiconductorlasersCrosssectionoftwoindex-guidedsemiconductorlasers:(a)ridge-waveguidestructureforweakindexguiding;(b)buriedheterostructureforstrongindexguiding.

XYChapter235SOEI,HUSTWhenlightisconfinedintoacavitysmallerthanitswavelength(~1μm),itbehavesasaparticle(quantum)ratherthanasawave.3.Multi-Quantum-WellLDsInMQWstructure,oftenanumberofquantumwellsareusedoneontopofanother.Theseparatinglayersbetweenthemareverythin(~10nm)andhavedifferentbandgaps.TheMQWstructurecanreducethelasingthreshold,andpreventslateralmodesforming.AndtheMQWlasershaveanarrowerlinewidththanconventionalstructures.Chapter236SOEI,HUSThomojunctionDoubleheterostructureStripegeometryMulti-quantum-wellRelativelystrongerconfinementofinjectedcarriersandoutputphotons,thuslowerthresholdcurrentandhigherslopeefficiency!Chapter237SOEI,HUSTSideModeSuppressionRatio(SMSR):orMLMLossSLM2.3.3ControlofLongitudinalModesChapter238SOEI,HUSTFeedbackisnotlocalizedatthefacetsbutisdistributedthroughoutthecavitylength.Anditcanbeachievedthroughaninternalbuilt-ingratingthatleadstoaperiodicvariationofthemodeindex.FeedbackoccursbymeansofBraggdiffraction,aphenomenonthatcouplesthewavespropagatingintheforwardandbackwarddirections.ThereforemodeselectivityoftheDFBlaseroccursonlyforwavelengthsλBsatisfying

theBraggcondition:1.DistributedFeedback(DFB)LasersChapter239SOEI,HUST2.SampledGratingDBRLasersDBR:distributedBraggreflectorChapter240SOEI,HUST3.Cleaved-coupledCavityLasersBycleavingaconventionalmulti-longitudinal-modesemiconductorlaserinthemiddle,itisdividedintotwosectionsandseparatedbyanarrowairgap(~1μm).Thereflectivityofcleavedfacets(~30%)allowsenoughcouplingbetweenthetwosectionsaslongasthegapisnottoowide.Possibletotunetheoutputwavelengthoveratuningrange~20nmbyvaryingthecurrentinjectedintooneofthecavitysectionsactingasamodecontroller.Tuningisnotcontinuous,sinceitcorrespondstosuccessivemodehops.Chapter241SOEI,HUST4.ExternalCavityLasers

Consistingofalaserdiode(LD),adiffractiongrating,afocuslensandamirror.Bychangingtheangleofthemirror,thelasingwavelengthistuned.Byoptimallyaligningthesecomponents,alasingcavityiscreatedthathasnomodehopswhenthewavelengthischanged.conventionalChapter242SOEI,HUSTR>99%5.VCSELs(VerticalCavitySurfaceEmittingLasers)Chapter243SOEI,HUSTThemirrorstacksaremadeofalternatinglayersofmaterialofdifferentrefractiveindices,formingaBragggratingtoobtainthewavelengthselection.Theactiveregionisveryshort,whichmeansthatthemirrorsshouldhavearelativelyhighreflectivity.Theoxideconfinementtechniqueinwhichaninsulatingaluminum-oxidelayer,actingasadielectricaperture,confinesboththecurrentandtheopticaltransversemodes.Thelowdivergencecircularlightbeamallowsforeasyandefficientcouplingtoafiber.Typicalcoupledoutputpowerisafewmilliwatts.Chapter244SOEI,HUST2.3.4NoiseandLinewidth1.NoiseMechanismsinLDsIntensity,phase,andfrequencyofLDswillfluctuateevenwhenbiasedataconstantcurrent.Noisemechanisms:eachspontaneouslyemittedphotonaddstothecoherentfield(establishedbystimulatedemission)asmallfieldcomponentwhosephaseisrandom,andthusperturbsbothamplitudeandphaseinarandommanner.Intensityfluctuationsleadtoalimitedsignal-to-noiseratio(SNR),whilephasefluctuationsleadtoafinitespectrallinewidth.Chapter245SOEI,HUST2.LinewidthandRelatedMeasurementThemodifiedScholow-Townsformulagivestherelationshipbetweenthelinewidthandspontaneousemission:

whereP,photondensityinsidethelasercavity;Rsp,spontaneousemissionfactor;βc,linewidthenhancementfactor.SpectralwidthandlinewidthChapter246SOEI,HUSTCoherencetimeandcoherencelengthcanallberelatedtothelinewidth.Coherencelengthdescribesthepropagationdistanceoverwhichalightwavesignalmaintainsitscoherence,wherevgisthegroupvelocityoftheopticalsignal.Foralightsourcewiththelinewidthof10kHz,thecoherencelengthisapproximately~30km.Coherencetimeisthetimeintervalwithinwhichthephaseofalightwaveisstillpredictable.Thelinewidthmeasurementisimplementedbythedelayedself-heterodynetechniques.IfthedifferentialdelayoftheMach-Zehnderinterferometerismuchlongerthanthecoherencetimeoftheopticalsignal,thecorrespondingcomponentsviadifferentpathscancombine

incoherentlyatthesecondopticalcoupler(OC).Itresemblesthemixingbetweenlightsfromtwoindependentlasersourceswithidenticalspectrallinewidth.Chapter247SOEI,HUSTESALinewidthmeasurementsetupOCOCChapter248SOEI,HUSTFrequencytranslationandlinewidthrelationsindelayedself-heterodynedetectionAnacousto-opticfrequencymodulator(AOFM)isusedasafrequencyshifterinonearmtoavoidthehighnoiselevelsinlow-frequencyregionofmostelectricalspectrumanalyzer(ESA).TheAOFMcancauseafrequencyshiftoffIFontheorderofafewhundredmegahertz.Thustheheterodynedetectionoftheopticalsignalsarerealizedinthephotodetector.Chapter249SOEI,HUSTIfthenormalizedRFspectraldensitymeasuredbyESAisSIF(f),theopticalsignalpowerspectraldensitySp,s(f)willsatisfythefollowingauto-convolution:TrueorFalse?Chapter250SOEI,HUST1.以下论述正确的是:()A、非辐射复合会影响发光器件的发光效率;B、正向偏置的PN结中导带和价带的准费米能级趋于一致;C、半导体材料要发光,必须实现粒子数的反转;D、LD中最初的光子来源于内部的自发辐射;E、电子与空穴复合不一定产生光子;F、双异质结结构提高了半导体光源的量子效率;G、工作于1.55m处的半导体光源有源层材料为InP;

H、温度升高发光器件的发光效率会下降;

I、间接带隙半导体材料中非辐射复合效率高于辐射复合效率,不适合用作光源材料。Chapter251SOEI,HUST1.以下论述正确的是:()

A、非辐射复合会影响发光器件的发光效率;

B、正向偏置的PN结中导带和价带的准费米能级趋于一致;C、半导体材料要发光,必须实现粒子数的反转;

D、LD中最初的光子来源于内部的自发辐射;

E、电子与空穴复合不一定产生光子;

F、双异质结结构提高了半导体光源的量子效率;G、工作于1.55m处的半导体光源有源层材料为InP;

H、温度升高发光器件的发光效率会下降;

I、间接带隙半导体材料中非辐射复合效率高于辐射复合效率,

不适合用作光源材料。Chapter252SOEI,HUST2.3.5CWCharacteristicsofLDs

1.RateEquationsForaSLMlaser,therateequations:P,N:numberofphotons&carriersNetrateofstimulatedemission—opticalgain:Photonlifetime:gm:peakgainofmaterial:gaincrosssection,ordifferentialgain:transparentcarriernumberChapter253SOEI,HUSTForI>Ith,R1=R22.CWOperationConditionsChapter254SOEI,HUSTThresholdofP-IcurvesSpontaneousemissionStimulatedemissionI0:constant,T0:characteristictemperatureGaAs:T0=120K,InGaAsP:T0=50~70KBendingofP-Icurves

Rnr:mainlydependingonAugerrecombinationinInGaAsPLDsSolution:built-inthermoelectriccoolerisusedtodealwithtemperaturesensitivitiesofInGaAsPLDs3.P-ICurvesChapter255SOEI,HUSTInternalquantumefficiency:Slopeefficiency:Differentialquantumefficiency:Externalquantumefficiency:wall-plugefficiency:GaAslasers:InGaAsPlasers:4.EfficienciesChapter256SOEI,HUST2.3.6ModulationResponseofLDsSmall-signalmodulation:Frequencyresponse:1.Small-SignalModulationModulationbandwidthChapter257SOEI,HUSTModulationresponseofalaserasafunctionofmodulationfrequencyatseveralbiaslevels.theefficiencyisreducedwhenthemodulationfrequencyexceedsΩR

byalargeamount.Chapter258SOEI,HUST2.Large-SignalModulationExternalmodulationforhighspeedtransmission!Frequencychirp

βc:amplitude-phasecouplingparameter,forbulkmaterial:4~8,MQW:~3.frequencyshift:leadingedge:thelongitudinalmodefrequencyshiftstowardtheblue

side.trailingedge:shiftstowardtheredside.

Chapter259SOEI,HUSTElectro-opticaldelay&relaxationoscillation

Whenpumpingpowerisappliedtothelaser,theupperenergystatepopulationbuildsupuntilaninversionoccursandlasingcancommence.Lasingcandepletetheupperenergystateveryquickly.Andifpumpingisn'tquitefastenough,lasingwillmomentarilystop.Verysoonafterwardsitwillstartagainasthepumpbuildsupapopulationinversionagain.Chapter260SOEI,HUSTA、LD的激射波长一定是自发辐射的峰值波长;B、条形激光器中也存在双异质结结构;C、双异质结中对载流子的限制作用是因为存在内建折射率波导;D、通过选择合适的组分x和y,基于In1-xGaxAsyP1-y的半导体光源可设计工作于0.85m处;E、LD有谐振腔,而LED没有;F、LD的P-I曲线有阈值,而LED的P-I曲线没有阈值;G、LD和SOA中最初的光子均来源于自发辐射;H、激光器的小信号调制带宽会随着偏置电流的增加而增大;I、偏置电流选择合理可适当减小张驰振荡和电光延时效应的影响;J、单纵模LD用作光源时,色散容限大。

2.以下关于半导体材料和发光机理论述错误的是:TrueorFalse?Chapter261SOEI,HUST

A、LD的激射波长一定是自发辐射的峰值波长;B、条形激光器中也存在双异质结结构;

C、双异质结中对载流子的限制作用是因为存在内建折射率波导;

D、通过选择合适的组分x和y,基于In1-xGaxAsyP1-y的半导体光源可设计工作于0.85m处;E、LD有谐振腔,而LED没有;F、LD的P-I曲线有阈值,而LED的P-I曲线没有阈值;

G、LD和SOA中最初的光子均来源于自发辐射;H、激光器的小信号调制带宽会随着偏置电流的增加而增大;I、偏置电流选择合理可适当减小张驰振荡和电光延时效应的影响;J、单纵模LD用作光源时,色散容限大。

2.以下关于半导体材料和发光机理论述错误的是:Chapter262SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter263SOEI,HUST2.4.1BasicConcepts1.DigitalModulationLDdigitalmodulationFordirectlymodulatedLD,biasednearthreshold!Tomitigatetheelectro-opticaldelayandrelaxationoscillation.Tosuppressthepatterneffect.Inducingrelativelylowextinctionratioandlargeshotnoise.Chapter264SOEI,HUST2.DigitalLogicElectricalLevel

0 1 TTL:0~0.8V 2.0~5.0V (-5V)ECL:-1.75V -0.85 V (+5V)PECL:+3.25V +4.15 V3.ExtinctionRatioPP1P00tChapter265SOEI,HUST4.Source-fiberCoupling

5.Packaging

sourcefiberRfcoatinglensedfiberdiesubmountPDheatsinkTECcoolerfibermetalshellTEC(ThermallyExpandCore)FiberChapter266SOEI,HUSTChapter267SOEI,HUST2.4.2Drivingandmodulationcircuits1.DigitalModulationCircuitwithAPCforLDT1和T2轮流截止和导通,避免载流子恢复时间的影响,可工作于高速率;射极耦合电路为恒流源,总电流可保持不变,噪声小;由于T2和T3导通电压的负温度特性,可另加两个二极管D1、D2对T2、T3进行补偿,使温度变化时驱动电流保持恒定。Chapter268SOEI,HUST热敏电阻RT接在电桥的一个臂上;在设定温度下,电桥处于平衡状态,制冷器没有电流流过;由于热敏电阻具有负的温度系数,温度升高时电桥平衡被破坏,制冷器开始工作,从而可使得LD的结温不超过设定温度。由于VT的单向导通特性,图示电路中的制冷器只能工作在单一模式(制冷或加热)2.ATCCircuitChapter269SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter270SOEI,HUST2.5.1ExternalModulationandModulatorElectro-absorptionModulator(EAM)1.ExternalModulatorEAMmakesuseoftheFranz–Keldysheffect(夫兰兹-凯耳什效应),accordingtowhichthebandgapofasemiconductordecreaseswhenanelectricfieldisappliedacrossit.Thus,atransparentsemiconductorlayerbeginstoabsorblightwhenitsbandgapisreducedelectronicallybyapplyinganexternalvoltage.Chapter271SOEI,HUSTCharacteristics:relativelylowdrivevoltages(typ.2V)cost-effectiveinvolumeproductionandeasytorealizeintegrationwavelength-dependentabsorptionrelativelylowdynamicextinctionratios(<10dB)residualchirplimitedopticalpower-handlingcapabilitiesChapter272SOEI,HUSTMach–ZehnderModulator(MZM)OpticalwaveguideMach-ZehnderInterferometerTravelling-WaveImpedancematchedelectrodestructureMZMsworkbytheprincipleofinterference,controlledbymodulatingtheopticalphase.Therefractiveindexofelectro-opticmaterialssuchasLiNbO3canbechangedbyapplyinganexternalvoltage.

Thereforephaseshiftcanbeintroducedthroughvoltage-inducedindex.Chapter273SOEI,HUST2.OperationPrincipleofMZMsPhaseshiftinthecorrespondingarm:Outputopticalfield:Themodulationvoltagethatisrequiredtochangethephaseinonemodulatorarmbyπ,andtherebyletstheMZMswitchfromfulltransmissiontofullextinction,iscalledswitchingvoltageVπ.Chapter274SOEI,HUSTV1(t)=-V2(t),thephasetermcanbeeliminatedinEout(t),knownasbalanceddrivingorpush–pulloperation.Outputopticalintensity:sinusoidalpowertransferfunctionChapter275SOEI,HUSTBiasedandmodulation(data)voltage:Single-driveMZMElectricalNRZdataChapter276SOEI,HUST2.5.2OpticalSignalGeneration1.NRZFormatReverseloadingForwardloading1111100000WaveformEyediagramChapter277SOEI,HUST2.

RZFormat33%RZNRZ67%CSRZChapter278SOEI,HUSTPulsecarvingDifferentRZformatscanbeimplementedby

pulsecarving:50%RZ--SinusoidallydrivingaMZMatthedatarateBbetweentheminimumandthemaximumtransmission,i.e.theamplitudeofclockisVπ/2andthebiasedvoltageis-Vπ/2.The

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论