版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WORDWORD版本.外文原文StudyonHumanResourceAllocationinMulti-ProjectonthePriorityandtheCostofProjectsLinJingjing,ZhouGuohuaSchoolofEconomics and management, Southwest Jiao University,610031,ChinaAbstract----Thispaperputforwardtheaffectingfactorsofproject’spriority.whichisintroducedintoamulti-objectiveoptimizationmodelforhumanresourceallocationinmulti-projectenvironment.Theobjectivesofthemodelweretheminimumcostlossduetothedelayofthetimelimitoftheprojectsandtheminimumdelayoftheprojectwiththehighestpriority.ThenaGeneticAlgorithmtosolvethemodelwasintroduced.Finally,anumericalexamplewasusedtotestifythefeasibilityofthemodelandthealgorithm.Index Terms—Genetic Algorithm, Human Resource Multi-project’sproject’spriority.INTRODUCTIONMoreandmoreenterprisesarefacingthechallengeofmanagement,whichhasbeenthefocusamongresearcheson projectmanagement.Inmulti-projectenvironment,thesharearecompetitionofresourcessuchascapital,timeandhumanresourcesoftenoccur.Therefore,it’scriticaltoscheduleprojectsinordertosatisfythedifferentresourcedemandsandtoshortenthedurationtimewithresourcesconstrained,asin[1].Formanyenterprises,thehumanresourcesarethemostpreciousasset.Soenterprisesshouldreasonablyandeffectivelyallocateeachresource,especiallythehumanresource,inordertoshortenthetimeandofprojectsandtoincreasethebenefits.Someliteratureshavediscussedtheresourceallocationprobleminmulti-projectenvironmentwithresourcesconstrained.Reference[1]designedaniterativealgorithmandproposedamathematicalmodeloftheresource-constrainedmulti-projectscheduling.Basedonworkbreakdownstructure(WBS)andDantzig-Wolfedecompositionmethod,afeasiblemulti-projectplanningmethodwasillustrated,asin[2]References[3,4]discussedtheresource-constrainedprojectschedulingbasedonBranchDelimitationmethod.Reference[5]putforwardtheframeworkofhumanresourceallocationinmulti-projectinLong-term,medium-termandshort-termaswellasresearchanddevelopment(R&D)environment.BasedonGPSSlanguage,simulationmodelofresourcesallocationwasbuilttogettheproject’sdurationtimeandresourcesdistribution,asin[6].Reference[7]solvedengineeringproject’sresourcesoptimizationproblemusingGeneticAlgorithms.Theseliteraturesreasonablyoptimizedresourcesallocationinmulti-project,butallhadthesameprerequisitethattheproject’simportanceisthesametoeachother.Thispaperanalyzetheeffectsofproject’spriorityonhumanresourceallocation,whichistobeintroducedintoamathematicalmodel;finally,aGeneticAlgorithmisusedtosolvethemodel.EFFECTSOFPROJECTSPRIORITYONHUMANRESOUCEALLOCATIONANDAFFECTINGFACTORSOFPROJECT’SPRIORITYResourcesharingisoneofthemaincharacteristicsofmanagement.Theallocationofsharedresourcesrelatestotheefficiencyandrationalityoftheuseofresources.Whenresourceconflictoccurs,theresourcedemandoftheprojectwithhighestpriorityshouldbesatisfiedfirst.Onlyafterthat,cantheprojectswithlowerprioritybeconsidered.Basedontheideaofprojectclassificationmanagement,thispaperclassifiestheaffectingfactorsofproject’spriorityintocategories,astheproject’sbenefits,thecomplexityofprojectmanagementandtechnology,andthestrategicinfluenceontheenterprise’sfuturedevelopment.Thepriorityweightoftheprojectisthefunctionoftheabovethreecategories,asshownin(1).W=f(I,c,s…) (1)Wherewreferstoproject’spriorityweight;Ireferstothebenefitsoftheproject;creferstothecomplexityoftheproject,includingthetechnologyandmanagement;sreferstotheinfluenceoftheprojectonenterprise.Thebiggerthevaluesofthethreecategories,thehigherthepriorityis.HUMANRESOURCEALLOCATIONMODELINMULTI-PROJECTENVIRONMENTProblemDescriptionAccordingtotheconstrainttheory,theenterpriseshouldstrictlydifferentiatethebottleneckresourcesandthenon-bottleneckresourcestosolvetheconstraintproblemofbottleneckresources.Thispaperwillstressonthelimitedcriticalresourcesbeingallocatedtomulti-projectwithdefinitedurationtimesandpriority.Tosimplifytheproblem,wesupposethatthatthreeexistseveralparallelprojectsandasharedresourcesstorehouse,andtheenterprise’soperationonlyinvolvesonekindofcriticalresources.Thesupplyofthecriticalhumanresourceiswhichcannotbeobtainedbyhiringoranyotherwaysduringacertainperiod.whenresourceconflictamongparallelprojectsoccurs,wemayallocatethehumanresourcetomulti-projectaccording to project’s priorities .The allocation ofnon-criticalindependenthumanresourcesisnotconsideredinthispaper,whichsupposesthattheindependentresourcesthateachprojectneedscanbesatisfied.Engineeringprojectsusuallyneedmassivecriticalskilledhumanresourcesinsomecriticalchain,whichcannotbesubstitutedtheotherkindofhumanresources.Whenthecriticalchainsofprojectsatthesametimeduringsomeperiod,thereoccurresourceconflictandcompetition.Thepaperalsosupposesthatthecorrespondingnetworkplanningofvariousprojectshavealreadybeenestablished,andthepeaksofeachproject’sresourcesdemandhavebeenoptimized.Thedelayofthecriticalchainaffectthewholeproject’sdurationtime.ModelHypothesesThefollowinghypotheseshelpustoestablishamathematicalmodel:Thenumberofmutuallyindependentprojectsinvolvedinresourceallocationprobleminmulti-projectisN.projectisindicatedwithQ,whilei=1,2,…N.iThe priority weights of multi-project have beendetermined,whicharerespectivelyw,w…w.1 2 nThetotalnumberofthecriticalhumanresourcesisR,withrstandingforeachperson,whilek=1,2,…,Rk1humanresourcertoprojectQ(4)Δk= k ii 0othersResourcescapturingbyseveralprojectsbeginsontime.tEisitheexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskaftertimet,onthepremisethatthehumanresourcesdemandcanbesatisfied.tAiistherealdurationtimeofprojectIthatneedsthecriticalresourcetofinishsometaskaftertimet.Accordingtothecontract,ifthedelayoftheprojecthappensthedailycostlossduetothedelayis△cforprojectiI.Accordingtotheproject’simportance,thedelayofaprojectwillnotonlycausethecostloss,butwillalsodamagetheprestigeandstatusoftheenterprise.(whilethecostisdifficulttoquantify,itisn’tconsideredinthisarticletemporarily.)Fromthehypothesis(5),wecanknowthataftertimettime-gapbetweentherealandexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskis△t,(△t=tA-tE ).Forthereexists resourcesi i i icompetition,thetime–gapisnecessarilyapositivenumber.(8)Accordingtohypotheses(6)and(7),thetotalcostlossprojectIisC (C=△t*△C).i i i i(9)Thedurationtimeofactivitiescanbeexpressedbytheworkloadofactivitiesdividedbythequantityofresources,whichcanbeindicatedwithfollowingexpressionof tA=η/R* ,.Intheexpression,ηreferstotheworkloadi i i iofprojectsIduringsomeperiod,whichissupposedtobefixedandpre-determinedbytheprojectmanagersonprojectplanningphase;R*referstothenumberofthecriticalhumanresourcesibeingallocatedtoprojectsIactually,withtheequationRi=Rk1
existing.DuetotheresourcecompetitionthekiresourcedemandsofprojectswithhigherPrioritiesmaybeguarantee,whilethoseprojectswithprioritiesmaynotbefullyguaranteed.Inthissituation,thedecreaseoftheresourcesupplywillleadtotheincreasethedurationtimeofactivitiesandtheproject,whiletheworkloadisfixed.OptimizationModelBasedontheabovehypotheses,theresourceallocationmodelinmulti-projectenvironmentcanbeestablished.Here,theoptimizationmodelis:F=minZ=minN i i
Cii=minNi1
i1N
i1tci i i
(2)=minN
N
i tE ci R i ii1
i1
kii1 F =minZ=mint2 2
=min i tE (3)R ikikii1Wherewj=max(wi),(i,jN) (4)Subject to:0N
=R (5)kii1 kThemodelisamulti-objectiveone.Thetwoobjectivefunctionsarerespectivelytominimizethetotalcostloss,whichisconformtotheeconomictarget,andtoshortenthetimeoftheprojectwithhighestpriority.Thefirstobjectivefunction can only optimize the apparent economiccost;thereforethesecondobjectivefunctionwillhelptomakeupthislimitation.Fortheprojectwithhighestpriority,timedelaywilldamagenotonlytheeconomicbenefits,butalsothestrategyandtheprestigeoftheenterprise.Thereforeweshouldguaranteethatthemostimportantprojectbefinishedontimeoraheadofschedule.SOLUTIONTOTHEMULTI-OBJECTIVEMODELUSINGGENETICALGORITHMThe multi-objective optimization problem is quitecommon.Generally,eachobjectiveshouldbeoptimizedinordertogetthecomprehensiveobjectiveoptimized.Thereforetheweightofeachsub-objectiveshouldbeconsidered.Reference[8]proposedanimprovedantcolonyalgorithmtosolvethisproblem.Supposedthattheweightsofthetwooptimizingobjectivesareα andβ,whereα+β=1.ThenthecomprehensivegoalisF* ,whereF*=αF1+βF2.ThePrincipleofGeneticAlgorithmGeneticAlgorithmrootsfromtheconceptsofnaturalselectionandgenetics.It’sarandomsearchtechniqueforglobaloptimizationinacomplexsearchspace.Becauseoftheparallelnatureandlessrestrictions,ithasthekeyfeaturesofgreatcurrency,fastconvergenceandeasycalculation.Meanwhile,itssearchscopenotlimited,soit’saneffectivemethodtosolvetheresourcebalancingproblem,asin[9].ThemainstepsofGAinthispaperareasfollow:EncodingAnintegerstringisshort,directandefficient.Accordingtothecharacteristicsofthemodel,thehumanresourcecanbeassignedtobeacodeobject.Thestringlengthequalstothetotalnumberofhumanresourcesallocated.ChoosingthefitnessfunctionThispaperchoosetheobjectivefunctionasthefoundationoffitnessfunction.Toratethevaluesoftheobjectivenfunction,thefitnessofthen-thindividualis1/ 。nGeneticoperationIt’sthecoreofGA.Thisprocessincludesthreebasicoperators:selectionoperator,crossoveroperator,andmutationoperation.Selectionoperationistoselectthegoodindividualsamongthegroup.Theprobabilityofastringtobeselectedaparentisproportionaltoitsfitness.Thehigherthestring’sfitnessis,thegreatertheprobabilityofstringtobeselectedasaparentwillbe.CrossoveroperatorTheso-calledcrossoveristhatthepatenchromosomesexchangesomegenes toyieldtwooffspringstringsinrule.Wecanuseuniformcrossover,thatthetwochromosomesexchangethegenesonthesamepositionswiththesamecrossoverprobabilitytoyieldtwonewindividuals.MutationoperatorMutationaddstothediversityofapopulationandtherebyincreasesthelikelihoodthatthealgorithmwillindividualswithbetterfitnessvalues.ThemutationoperatordeterminesthesearchabilityofGA,maintainthediversityofapopulation,andavoidtheprematurity.Thereareseveralmutationisquiteeasy.StandardfortheterminalofGAWithouthumancontrol,theevolutionprocessofthealgorithmwillneverend.Thepopulationsizeaffectsfinalresultandtheoperationspeed.Ifthesizeisgreater,thediversityofthepopulationcanbeadded,andthebestresultcanbeobtainedeasier.However,theefficiencyisreduced.Recently,inmostGAprogress,thebiggestevolvementalgebraisdeterminedbytocontrolthecoursethealgorithm.NUMERICALEXAMPLEWeuseanumericalexampletoillustratetheeffectivenessofGeneticAlgorithm.Assumethat therearethreeprojectsthesamenetwork,andthepriorityweightshavebeenputforward.Thereisonlyonecriticalpathineachproject.datawehaveknownareshowninTable1.ProjePriorityProjePrioritytECostloss(humanWorkloadctweightwyuan/day)(person*day)10.421010010020.3181508030.271280120ThestepsofGeneticAlgorithmtosolvethemodelareasfollow:Step1: Anintegerstringisadopted.Encodewith[0,1,2]forarethreeprojects.Thelengthofthechromosomeis16,thetotalnumberofhumanresourcetobeallocated.Step2:Theinitialpopulationsizeis50.Step3:Doinggeneticoperation.AdoptRouletteWheelandElitisttactictodeterminedselectionoperator.Theoffspringcanbebyuniformcross-over.Themutationoperatorcanbedeterminedbyuniformmutation.Weassumethatthemutationprobabilityequalto0.001.Step4:Adoptthemaximumpopulationsizeis100whenterminated.Afterthecomputersimulation,wecanobtainthePare-toresultswithdifferentimportanceweightsofthetwoobjectivefunctions,asinTable2:Table2TheSolutionResultoftheModelR*1R*2R*3F1(HundredYuan)F2(Day)α=1,β=0655911.22.8α=0.7,β=0.3754940.81.8α=0.4,β=0.68441051.81.05α=0.1,β=0.910331472.80Fromtable2wecanlearnthat,andβchange,theresultdifferent.HoweverwecanobtainaseriesofParetoresults.CONCLUSIONHumanresourceallocationinmulti-projectenvironmentiscomplicatedproblem.Thispaperanalyzestheimportanceofproject’spriorityinresourceallocationandestablishesahumanresourceallocationmodelbasedonpriorityandcostofprojects.Finally,geneticAlgorithmisadoptedtosolvethemodel.Duringtheconstructionprocessoftheallocationmodel,wehaveforwardsomehypothesesinordertosimplifytheproblem.However,whentheenterprisespracticallyallocatetheresources,heywillfacemorecomplexity,whichisthefocusofourfuturestudy.中文翻译:在项目优先权和成本的基础上对多项目中人力资源配置的研究林晶晶,周中国西南交通大学经济和管理学院,610031摘要---本文提出项目优先次序的影响因素,为多项目环境配置人力资源引后,用一个数值例子证明该模型和算法的可行性。关键字---遗传算法;人力资源配置;多项目、项目的优先权;1、引言越来越多的企业面临的挑战是多项目管理,这已经成为项目管理研究的焦尤其是人力资源,用以缩短时间减少项目的成本和增加效益。迭代算法,并提出了资源约束的多项目调度的数学模型。基于工作分解结构(wbs)dantzig-wolf期的多项目及研究和开发(R&D)gpss解这一模型。项目优先权对人的资源分配的作用和影响项目优先权的因素在此之后,较低优先权的项目才予以考虑。基于项目分类管理的思想,本文将归类项目的优先次序的影响因素分为三发展。优先权的重量级取决于该项目上述三大类因素。公式为:W=f(I,c,s…)(1)wics、在多项目环境下的人力资源分配模型。、问题描述项目都有明确的期限和时代优先权。人力资源的配置问题,这是假定这些独立的资源可以满足每个项目的需求。环节的延误将会影响整个项目的持续时间。模
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论