下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市市万江中学2021-2022学年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,,,则a,b,c的大小关系是()A. B. C. D.参考答案:C【分析】由题意利用指数函数和对数函数的性质和所给数据所在的范围即可比较a,b,c的大小.【详解】由对数函数的性质可知,且,,据此可得:.故选:C.【点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小.2.曲线在点处的切线方程是,则(
)A.a=1,b=1
B.a=-1,b=1
C.a=1,b=-1
D.a=-1,b=-1参考答案:A略3.已知二次函数的导函数为,,f(x)与x轴恰有一个交点,则的最小值为( ) A.2
B.
C.3
D.参考答案:A4.已知直线、、,平面、有以下命题:
①若且,则;②若且,则;③若,则;④若平面内不共线的三点到平面的距离相等,则.则正确命题有(
)A.0个
B.1个
C.2个
D.3个参考答案:B5.已知点P(x,y)在直线2x+y+5=0上,那么x2+y2的最小值为()A. B.2 C.5 D.2参考答案:C【考点】点到直线的距离公式.【分析】x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,由点到直线的距离公式可得.【解答】解:x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,即为原点到该直线的距离平方d2,由点到直线的距离公式易得d==.∴x2+y2的最小值为5,故选:C6.如图是求样本x1,x2,…,x10平均数的程序框图,图中空白框中应填入的内容为()A.S=S+xn B.S=S+ C.S=S+n D.S=S+参考答案:A【考点】设计程序框图解决实际问题.【专题】操作型.【分析】由题目要求可知:该程序的作用是求样本x1,x2,…,x10平均数,循环体的功能是累加各样本的值,故应为:S=S+xn【解答】解:由题目要求可知:该程序的作用是求样本x1,x2,…,x10平均数,由于“输出”的前一步是“”,故循环体的功能是累加各样本的值,故应为:S=S+xn故选A【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7.k为任意实数,直线(k+1)x-ky-1=0被圆截得的弦长为()A.4
B.8
C.2
D.与k有关的值参考答案:A8.若~,则(A)
(B)
(C)
(D)参考答案:B略9.已知正四棱柱ABCD-A1B1C1D1中,,则CD与平面BDC1所成角的正弦值等于()A. B. C. D.参考答案:A试题分析:设,面积为考点:线面角
10.右面是某个算法的程序,如果输入的值是20,则输出的值是(
)A.200 B.50
C.25 D.150参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,椭圆(a>b>0)的焦距为2c,以O为圆心,a为半径作圆,若过作圆的两条切线互相垂直,则椭圆的离心率是.参考答案:12.已知向量=m+5﹣,=3++r若∥则实数m=
,r=
.参考答案:15;﹣。【考点】共线向量与共面向量.【专题】计算题;函数思想;平面向量及应用.【分析】由∥得出坐标对应成比例,分别求出实数m和r即可【解答】解:向量=m+5﹣=(m,5,﹣1),=3++r=(3,1,r),∥,则==解得m=15,r=﹣故答案为:15,﹣【点评】本题考点是空间共线向量的坐标表示,考查了空间共线向量等价条件的简单应用.13.椭圆+=1的离心率e=,则实数m的值为
▲
。参考答案:或略14.集合,,若,则实数的值为
参考答案:15.已知点M(1,2),N(3,2),点F是直线l:y=x﹣3上的一动点,当∠MFN最大时,过点M,N,F的圆的方程是.参考答案:(x﹣2)2+(y﹣1)2=2【考点】圆的标准方程.【分析】根据题意,设圆心坐标为C(2,a),当∠MFN最大时,过点M,N,F的圆与直线y=x﹣2相切,由此可确定出圆的标准方程.【解答】解:根据题意,设圆心坐标为C(2,a),当∠MFN最大时,过点M,N,F的圆与直线y=x﹣2相切.∴=,∴a=1或9,a=1时,r=,∠MCN=90°,∠MFN=45°,a=9时,r=5,∠MCN<90°,∠MFN<45°,则所求圆的方程为(x﹣2)2+(y﹣1)2=2.故答案为(x﹣2)2+(y﹣1)2=2.16.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有______________种.参考答案:90【分析】从6张电影票中任选2张给甲、乙两人,共种分法;再利用平均分配的方式可求得分配剩余4张票共有种分法;根据分步乘法计数原理求得结果.【详解】第一步:先从6张电影票中任选2张给甲、乙两人,有种分法第二步:分配剩余的4张,而每人最多两张,则每人各得两张,有种分法由分步乘法计数原理得:共有种分法本题正确结果:90【点睛】本题考查分步乘法计数原理解决组合应用题,涉及到平均分配的问题,关键是能够准确求解每一步的分法种数.17.不等式的解集为_______________;参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数在处取得极值.(1)求实数的值;(2)若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;参考答案:(2)
略19.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【专题】计算题;分类讨论.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立?f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).【点评】本题考查了导数的应用:函数在某点存在极值的性质,函数恒成立问题,而函数①f(x)<c2在区间[a,b]上恒成立与②存在x∈[a,b],使得f(x)<c2是不同的问题.①?f(x)max<c2,②?f(x)min<c2,在解题时要准确判断是“恒成立”问题还是“存在”问题.在解题时还要体会“转化思想”及“方程与函数不等式”的思想的应用.20.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.参考答案:【考点】正弦定理;余弦定理.【专题】解三角形.【分析】(I)由正弦定理得,结合二倍角公式及sinA≠0即可得解.(II)由(I)可求sinA,又根据∠B=2∠A,可求cosB,可求sinB,利用三角形内角和定理及两角和的正弦函数公式即可得sinC,利用正弦定理即可得解.【解答】解:(I)因为a=3,b=2,∠B=2∠A.所以在△ABC中,由正弦定理得.所以.故.(II)由(I)知,所以.又因为∠B=2∠A,所以.所以.在△ABC中,.所以.【点评】本题主要考查了正弦定理,同角三角函数关系式,两角和的正弦函数公式的应用,属于基本知识的考查.21.已知函数
(1)证明:(2)求不等式的解集.参考答案:(I)
当
所以
………………6分
(II)由(I)可知,
当的解集为空集;
当;
当.
综上,不等式
…………12分22.如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年跨境电商货运代收款合同
- 2025年度杉木林整体转让合同(林业经济版)2篇
- 2025版能源行业信息安全托管合同3篇
- 2024年鱼塘承包与渔业科普教育合同范本3篇
- 二零二五年度农产品检测业务合同样本3篇
- 2025版电梯维修保养市场调研与分析合同3篇
- 二零二五年度MyOracleSupport技术支持与故障排除服务合同
- 2025年度杭州新能源电动车销售合同2篇
- 2025年度教育培训机构首付分期合作协议书3篇
- 2024年诊所专业护士团队聘用及协作服务合同3篇
- 四川省普通高中2024届高三上学期学业水平考试数学试题(解析版)
- 石油钻井机械设备故障预防与维护保养范本
- 浙江省温州市2023-2024学年七年级上学期期末数学试卷(含答案)
- 【全国最火爆的团建项目】旱地冰壶(拓展训练服务综合供应平台)
- 北京市西城区2023-2024学年五年级上学期期末数学试卷
- 工程结算课件
- CNAS-CL02-A001:2023 医学实验室质量和能力认可准则的应用要求
- 海康威视枪机摄像机检测报告.文档
- 部编小语一下三单元(《小公鸡和小鸭子》《树和喜鹊》《怎么都快乐》)大单元学习任务群教学设计
- 体检中心组织架构
- 森林抚育投标方案
评论
0/150
提交评论