下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省阳泉市古城中学2022-2023学年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图过抛物线焦点的直线依次交抛物线与圆于A、B、C、D,则A.4 B.2 C.1 D.参考答案:C【分析】根据抛物线的几何意义转化,,再通过直线过焦点可知,即可得到答案.【详解】抛物线焦点为,,,,于是,故选C.【点睛】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力.2.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩参考答案:D【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【详解】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.【点睛】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.3.已知F1、F2是椭圆的两个焦点,满足的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1) B.(0,] C.(0,) D.[,1)参考答案:C【考点】椭圆的应用.【分析】由?=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵?=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.4.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A.3 B. C.2 D.6参考答案:C【考点】椭圆的简单性质.【分析】由椭圆的半焦距为2,离心率e=,可得c=2,a=3,求出b,从而求出答案.【解答】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.5.下列命题中的真命题是
()
A命题”若a、b都是偶数,则a+b是偶数”的逆命题
B命题”奇数的平方不是偶数”的否定C命题”空集是任何集合的真子集”的逆否命题
D命题”至少有一个内角为60°的三角形是正三角形”的否命题参考答案:D略6.对任意复数,为虚数单位,则下列结论正确的是(
)A.
B.
C.
D.
参考答案:D略7.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,将f(x)的图象向右平移个长度单位,所得图象对应的函数解析式为()A.f(x)=sin2x B.f(x)=﹣sin2x C.f(x)=sin(2x﹣) D.f(x)=sin(2x+)参考答案:C考点: 函数y=Asin(ωx+φ)的图象变换.
专题: 计算题;三角函数的图像与性质.分析: 依题意,知A=1,T=π,从而可求ω=2;再由ω+φ=2kπ+π(k∈Z),|φ|<可求得φ,从而可得y=f(x)的解析式,最后利用函数y=Asin(ωx+φ)的图象变换即可求得将f(x)的图象向右平移个长度单位,所得图象对应的函数解析式.解答: 解:依题意,知A=1,T=﹣=,∴T==π,ω=2;又ω+φ=2kπ+π(k∈Z),∴φ=2kπ+(k∈Z),又|φ|<,∴φ=,∴f(x)=sin(2x+),∴将f(x)的图象向右平移个长度单位,得y=f(x﹣)=sin[2(x﹣)+]=sin(2x﹣),故选:C.点评: 本题考查函数y=Asin(ωx+φ)的图象的解析式的确定及图象变换,考查分析运算能力,属于中档题.8.已知函数若在(-∞,+∞)上单调递增,则实数a的取值范围是A.[2,4]
B.[2,4)
C.(2,+∞)
D.[2,+∞)参考答案:A9.设函数(,为自然对数的底数).若存在使成立,则的取值范围是(B)A.B.C.D.参考答案:略10.曲线与两坐标轴所围成图形的面积为(
)A.4
B.3
C.
D.2参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的焦点到准线的距离为。参考答案:解析:抛物线方程为∴当a>0时,焦点到准线的距离;
当a<0时,焦点到准线的距离;当a≠0时,焦点到准线的距离.12.
.参考答案:略13.过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为________.参考答案:14.(坐标系与参数方程选做题)设点的极坐标为,直线过点且与极轴所成的角为,则直线的极坐标方程为
.
参考答案:或或或略15.在等差数列{an}中,公差=____.参考答案:略16.若抛物线的焦点与双曲线的一个焦点相同,则该抛物线的方程为_______参考答案:17.若正数m,n满足,则的最小值是______________.参考答案:【分析】条件等式化为,利用基本不等式可得关于的不等式,解不等式可得.【详解】因m,n为正数,所以,即.因为,所以即,即,所以,化简得,又m,n为正数,所以(当且仅当时取等号),所以.故答案为.【点睛】本题考查运用基本不等式求最值,对已知式恰当变形利用基本不等式建立所求式的不等式关系是解题关键,考查运算能力,属于难题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(Ⅰ)求证:+<2(Ⅱ)已知a>0,b>0且a+b>2,求证:,中至少有一个小于2.参考答案:【考点】不等式的证明.【分析】(Ⅰ)利用了分析法,和两边平方法,(Ⅱ)利用了反证法,假设:,都不小于2,则≥2,≥2,推得即a+b≤2,这与已知a+b>2矛盾,故假设不成立,从而原结论成立.【解答】(Ⅰ)证明:因为和都是正数,所以为了证明+<2,只要证(+)2<(2)2只需证:10<20,即证:2<10,即证:<5,即证:21<25,因为21<25显然成立,所以原不等式成立.(Ⅱ)证明:假设:,都不小于2,则≥2,≥2,∵a>0,b>0,∴1+b≥2a,1+a≥2b,∴1+b+1+a≥2(a+b)即a+b≤2这与已知a+b>2矛盾,故假设不成立,从而原结论成立.19.(12分)已知在直线上移动,求的最小值,并指出取最小值时的与的值。参考答案:20.(本小题满分12分)如图,已知直线:交抛物线于、两点,试在抛物线这段曲线上求一点,使的面积最大,并求这个最大面积.参考答案:得:、.故. …………………4分设点,则到直线的距离为:,所以.故当,即点时,的面积最大为.………………12分(亦可利用平行于直线的抛物线的切线求出点)21.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;参考答案:(Ⅰ)见解析;(Ⅱ).试题分析:(Ⅰ)先利用正方形得到线线垂直,再利用面面垂直的性质定理进行证明;(Ⅱ)利用勾股定理证明线线垂直,合理建立空间直角坐标系,写出出相关点的坐标,求出相关平面的法向量,再通过空间向量的夹角公式进行求解.试题解析:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=.则,令,解得,∴.,令,解得,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.22.(10分)(2015秋?洛阳期中)(1)已知正数a,b满足a+4b=4,求+的最小值.(2)求函数f(k)=的最大值.参考答案:【考点】基本不等式在最值问题中的应用;函数的最值及其几何意义.
【专题】不等式的解法及应用.【分析】(1)运用乘1法,可得+=(a+4b)(+)=(5++),再由基本不等式即可得到最小值;(2)令t=(t≥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第19课 科学技术的重大成果课件
- 2024年专业电工施工协议典范
- 中国特色社会主义基本原理(上)
- 2024年度层电梯厅装潢协议模板
- 2024年无薪实习劳动协议
- 2024年仓库租赁法律协议细则
- 2024年型车辆采购协议
- 2024届安徽省合肥高升学校高三八校第一次适应性考试数学试题试卷
- 2024建筑业劳务施工协议文本
- 2023-2024学年浙江省温州市九校下期第二次质量考评(3月)高三数学试题
- 高中生心理健康教育课教案(15篇)
- 公司隐私保护管理制度
- 2023-2024学年全国初中八年级上政治人教版期中考卷(含答案解析)
- 公园绿化保洁管理制度方案(2篇)
- 2024年高考数学(理科)全国3卷(精校版)
- 中国新闻事业史 知到智慧树网课答案
- 新质生产力-讲解课件
- 形势与政策(论当前国际形势和中国外交)
- 第六章常微分方程
- 《研学旅行课程设计》课件-体验式学习课程内容设计
- 艺术中国智慧树知到期末考试答案2024年
评论
0/150
提交评论