下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市南里信中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数(i为虚数单位)的虚部为(A)(B)(C)-(D)参考答案:C略2.已知是定义在上的函数,其图象是一条连续的曲线,且满足下列条件:①的值域为M,且Mí;②对任意不相等的,∈,都有|-|<|-|.那么,关于的方程=在区间上根的情况是A.没有实数根
B.有且仅有一个实数根C.恰有两个不等的实数根
D.有无数个不同的实数根参考答案:B略3.如图所给的程序运行结果为S=35,那么判断框中应填入的关于k的条件是()A.k=7 B.k≤6 C.k<6 D.k>6参考答案:D【考点】程序框图.【专题】算法和程序框图.【分析】根据程序,依次进行运行得到当S=35时,满足的条件,即可得到结论.【解答】解:当k=10时,S=1+10=11,k=9,当k=9时,S=11+9=20,k=8,当k=8时,S=20+8=28,k=7,当k=7时,S=28+7=35,k=6,此时不满足条件输出,∴判断框中应填入的关于k的条件是k>6,故选:D.【点评】本题主要考查程序框图的识别和判断,依次将按照程序依次进行运行即可.4.已知两定点,若直线上存在点P,使得,则该直线为“A型直线”。给出下列直线,其中是“A型直线”的是
。
①
②
③
④参考答案:①④略5.下列说法中,不正确的是(
)A.已知,命题:“若,则”为真命题B.命题:“”的否定是:“”C.命题“或”为真命题,则命题和命题均为真命题D.“”是“”的充分不必要条件参考答案:C试题分析:A.正确;B.正确;D,正确;C不正确,若命题“或”为真命题,则命题和命题由一个为真命题即可考点:命题的真假判定6.设函数,若互不相等的实数a,b,c满足,则的取值范围是()A.(16,32) B.(18,34) C.(17,35) D.(6,7)参考答案:B【分析】画出函数的图象,不妨令,则.结合图象可得,从而可得结果.【详解】画出函数的图象如图所示.不妨令,则,则.结合图象可得,故.∴.选B.【点睛】数形结合是根据数量与图形之间对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.7.设曲线在点处的切线与直线垂直,则(
)A.2 B. C. D.参考答案:B略8.已知函数且满足,则方程在[-3,5]上所有实根的和为(
)A.3 B.4 C.5 D.6参考答案:B【分析】根据得到函数的周期为,画出函数和的图像,由此求得在上所有实根的和.【详解】由于,故函数的周期为,画出和的图像如下图所示.注意到函数和都关于中心对称.所以在的四个交点的横坐标,也即所有实根关于对称,根据中点坐标公式可得所有实根的和为【点睛】本小题主要考查函数的周期性,考查分段函数的图像与性质,考查数形结合的数学思想方法,考查函数图像的对称性,属于中档题.9.设全集U={xZ|-1≤x≤5},A={1,2,5},B={xN|-1<x<4},则=A、{3}B、{0,3}C、{0,4}D、{0,3,4}参考答案:B10.阅读右边的程序框图,若输出S的值为52,则判断框内可填写
(
)
A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知实数a,b满足ab=1,且a>b≥,则的最大值为.参考答案:【考点】有理数指数幂的化简求值.【分析】由题意,化简==,求出a﹣b的取值范围,从而求的最大值.【解答】解:由题意,=,∵ab=1,a>b≥,∴0<a﹣b≤﹣=,∴==,∵y=x+在(0,)上是减函数,∴≤=.故答案为:.12.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”.若与在上是“关联函数”,则的取值范围为________;参考答案:13.曲线在点处的切线方程是__________________.参考答案:略14.设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________.参考答案:试题分析:抛物线的普通方程为,,,又,则,由抛物线的定义得,所以,则,由得,即,所以,,所以,.15.椭圆的离心率为,则=
▲
.参考答案:16.若关于的方程有实根,则实数的取值范围是
参考答案:略17.已知α为第四象限的角,且=
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列的前项和为,满足,.(1)求数列的通项;(2)令,求数列的前项和.参考答案:解:(1)∵……①,∴……②,②-①得,∵,∴,∴,∴时,,,即时,,∴数列是为首项,为公比的等比数列,∴.(2),则,∴……③,∴……④,④-③得.
19.在平面直角坐标系中,已知椭圆的左焦点,且在在上。(1)求的方程;(2)设直线同时与椭圆和抛物线相切,求直线的方程参考答案:(1)由题意得:故椭圆的方程为:
(2)①设直线,直线与椭圆相切
直线与抛物线相切,得:不存在
②设直线
直线与椭圆相切两根相等
直线与抛物线相切两根相等
解得:或
20.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)参考答案:(Ⅰ)由已知得,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:(分钟).(Ⅱ)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率,得.是互斥事件,.故一位顾客一次购物的结算时间不超过2分钟的概率为.21.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,圆C的方程为.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若点P坐标为,圆C与直线l交于A,B两点,求|PA|+|PB|的值.参考答案:考点:直线的参数方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:(Ⅰ)先利用两方程相加,消去参数t即可得到l的普通方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程.(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,利用参数的几何意义,求|PA|+|PB|的值.解答: 解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0﹣﹣﹣﹣﹣﹣﹣﹣2分又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;﹣﹣﹣﹣﹣﹣﹣﹣﹣5分(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分.点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 虚拟卡在游戏行业的应用研究-洞察分析
- 羊踯躅根抗肿瘤细胞实验研究-洞察分析
- 营养咨询企业竞争力提升-洞察分析
- 细胞因子疗法在浆细胞性白血病中的应用-洞察分析
- 医院医保资金工作总结范文(5篇)
- 号召学生加入志愿者倡议书(5篇)
- 单位防疫不力检讨书(5篇)
- 新型病毒传播途径研究-洞察分析
- 岩溶地区土壤侵蚀机制研究-洞察分析
- 医院医保工作总结范文(10篇)
- 2024-2025学年高二上学期期末数学试卷(基础篇)(含答案)
- 直系亲属股权无偿转让合同(2篇)
- 2023-2024学年广东省广州市白云区九年级(上)期末语文试卷
- 汽车吊篮使用专项施工方案
- 2024年典型事故案例警示教育手册15例
- 中秋国庆慰问品采购投标方案
- 110kV变电站及110kV输电线路运维投标技术方案(第二部分)
- 新高处安装维护拆除作业专题培训课件
- 培养教育考察记实簿
- 心可宁胶囊作用机理探析
- 工程管理基础知识考试试题(最新整理)
评论
0/150
提交评论