下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市中元外国语中学2023年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程(x-y)2+(xy-1)2=0表示的图形是()(A)一条直线和一条双曲线(B)两条双曲线(C)两个点(D)以上答案都不对参考答案:C2.某大学共有本科生5000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.20参考答案:B【考点】B3:分层抽样方法.【分析】要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.【解答】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是=40,故选B.3.已知双曲线一焦点坐标为(5,0),一渐近线方程为3x﹣4y=0,则双曲线离心率为()A. B.C. D.参考答案:D【考点】双曲线的简单性质.【分析】双曲线一焦点坐标为(5,0),一渐近线方程为3x﹣4y=0,可得c=5,=,结合c2=a2+b2,即可求出双曲线离心率.【解答】解:∵双曲线一焦点坐标为(5,0),一渐近线方程为3x﹣4y=0,∴c=5,=,c2=a2+b2解得:a=4,b=3,e=故选:D4.用反证法证明命题“若实系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个是偶数D.假设a,b,c至少有两个是偶数参考答案:B略5.是的_________条件;(
)A.必要不充分 B.充要C.充分不必要 D.既不充分也不必要参考答案:C【分析】依据充分条件、必要条件的定义即可判断出。【详解】因为,但是,所以,是的充分不必要条件,故选C。【点睛】本题主要考查充分条件、必要条件的定义的应用。6.是虚数单位。已知复数,则复数Z对应点落在(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:B略7.如图,正方体ABCD﹣A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为(
)A.棱柱 B.棱锥 C.棱台 D.球参考答案:A【考点】棱柱的结构特征.【专题】空间位置关系与距离.【分析】先讨论P点与A点重合时,M点的轨迹,再分析把P点从A点向上沿线段AD1移动,在移动过程中M点轨迹,最后结合棱柱的几何特征可得答案.【解答】解:∵Q点不能超过边界,若P点与A点重合,设AB中点E、AD中点F,移动Q点,则此时M点的轨迹为:以AE、AF为邻边的正方形;下面把P点从A点向上沿线段AD1移动,在移动过程中可得M点轨迹为正方形,…,最后当P点与D1点重合时,得到最后一个正方形,故所得几何体为棱柱,故选:A【点评】本题考查的知识点是棱柱的几何特征,解答的关键是分析出P点从A点向上沿线段AD1移动,在移动过程中M点轨迹.8.曲线y=ex在点A(0,1)处的切线斜率为()A.1 B.2 C.e D.参考答案:A【考点】直线的斜率;导数的几何意义.【分析】由曲线的解析式,求出导函数,然后把切点的横坐标x=0代入,求出对应的导函数的函数值即为切线方程的斜率.【解答】解:由y=ex,得到y′=ex,把x=0代入得:y′(0)=e0=1,则曲线y=ex在点A(0,1)处的切线斜率为1.故选A.9..由曲线所围成的封闭图形的面积为A.
B.
C.
D.
参考答案:B略10.由直线,曲线以及x轴所围成的封闭图形的面积是(
)A. B.3 C. D.参考答案:C【分析】作出图象,确定被积函数以及被积区间,再利用定积分公式可计算出所围成封闭图形的面积。【详解】如下图所示,联立,得,则直线与曲线交于点,结合图形可知,所求区域的面积为
,故选:C【点睛】本题考查利用定积分求曲边多边形区域的面积,确定被积函数与被积区间是解这类问题的关键,考查计算能力与数形结合思想,属于中等题。二、填空题:本大题共7小题,每小题4分,共28分11.已知命题“”为假命题,则实数的取值范围是__.参考答案:12.已知圆O:x2+y2=r2(r>0)与直线3x﹣4y+20=0相切,则r=
.参考答案:4【考点】圆的切线方程.【分析】由圆的方程求出圆心坐标,直接用圆心到直线的距离等于半径求得答案.【解答】解:由x2+y2=r2,可知圆心坐标为(0,0),半径为r,∵圆O:x2+y2=r2(r>0)与直线3x﹣4y+20=0相切,由圆心到直线的距离d==4,可得圆的半径为4.故答案为:4.13.已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.参考答案:
【考点】椭圆的简单性质.【分析】设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,再由三角形的面积公式以及内切圆的圆心与三个顶点将三角形△PF1F2分成三个小三角形,分别求面积再求和,得到a,c的方程,由离心率公式计算即可得到.【解答】解:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,由三角形的面积公式可得=×2c×4=4c,由△PF1F2的内切圆的半径为,则=×(m+n+2c)=(2a+2c)=(a+c),即有4c=(a+c),即为5c=3a,则离心率e==.故答案为:.14.等差数列中,,且,则中最大项为
参考答案:略15.复数的共轭复数是_________。参考答案:略16.如图,这是一个正六边形的序列,则第(n)个图形的边数为
参考答案:因而每个图形的边数构成一个首项为6,公差为5的等差数列,因而第(n)个图形的边数为.
17.函数在区间上存在极值点,则实数a的取值范围为__________参考答案:(-3,-2)∪(-1,0)【分析】利用导数求得的单调性;首先求解出在上无极值点的情况下的范围,即在上单调时的范围,取补集可求得结果.【详解】由题意知:当和时,;当时,则在,上单调递增;在上单调递减若在上无极值点,则或或时,在上无极值点当时,在上存在极值点本题正确结果:【点睛】本题考查根据函数在某一区间内极值点的个数求解参数取值范围的问题.处理此类问题时,可根据二次函数的图象来进行讨论,也可以利用函数在区间内是否单调来确定参数的取值范围.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)用数学归纳法证明:当n为正整数时,13+23+33+……+n3=参考答案:19.如右图,圆锥中,、为底面圆的两条直径,,且,,为的中点.异面直线与所成角的正切值为
.参考答案:略20.
写出用二分法求方程x3-x-1=0在区间[1,1.5]上的一个解的算法(误差不超过0.001),并画出相应的程序框图及程序.参考答案:程序:a=1b=1.5c=0.001DOx=(a+b)2f(a)=a∧3-a-1f(x)=x∧3-x-1IF
f(x)=0
THENPRINT
“x=”;xELSEIF
f(a)*f(x)<0
THENb=xELSEa=xEND
IFEND
IFLOOP
UNTIL
ABS(a-b)<=cPRINT
“方程的一个近似解x=”;xEND
21.(12分)设随机变量X的分布列P=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)≥;(3)求P参考答案:解:(1)由a·1+a·2+a·3+a·4+a·5=1,得a=.·······4分(2)因为分布列为P=k(k=1、2、3、4、5)解法一:P=P+P+P(X=1)=++=;解法二:P=1-=1-=.·····
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论