下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市金井中学2022-2023学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆和圆的位置关系为(
)A.相交
B.
内切
C.外切
D.外离参考答案:D略2.设,为复数且满足,则在复平面内对应的点在().A.轴下方
B.轴上方
C.轴左方
D.轴右方参考答案:B3.设定点,,动点满足,则点的轨迹是(
)A.椭圆
B.椭圆或线段
C.线段
D.无法判断参考答案:B略4.若复数z满足|z|=2,则|1+i+z|的取值范围是()A.[1,3] B.[1,4] C.[0,3] D.[0,4]参考答案:D【考点】A8:复数求模.【分析】设z=a+bi(a,b∈R),可得a2+b2=4,知点Z(a,b)的轨迹为以原点为圆心、2为半径的圆,|1+i+z|表示点Z(a,b)到点M(﹣1,﹣)的距离,结合图形可求.【解答】解:设z=a+bi(a,b∈R),则=2,即a2+b2=4,可知点Z(a,b)的轨迹为以原点为圆心、2为半径的圆,|1+i+z|表示点Z(a,b)到点M(﹣1,﹣)的距离,∵(﹣1,﹣)在|z|=2这个圆上,∴距离最小是0,最大是直径4,故选:D.【点评】本题考查复数的模、复数的几何意义,考查学生的运算求解能力,属中档题.5.已知点是抛物线上的点,设点到抛物线的准线的距离为,到圆上一动点的距离为,则的最小值是A.3
B.4
C.5
D.参考答案:B6.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.参考答案:C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】则.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.7.空间中,设m,n表示直线,α,β,γ表示平面,则下列命题正确的是()A.若α⊥γ,β⊥γ,则α∥β B.若m⊥α,m⊥β,则α∥βC.若m⊥β,α⊥β,则m∥α D.若n⊥m,n⊥α,则m∥α参考答案:B【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】本题研究线线、线面、面面之间的位置关系,A,B两个选项研究面面之间的位置关系,B、D选项研究线面之间的位置关系,对四个选项依次用相关的知识判断其正误即可.【解答】解:对于A选项,若α⊥γ,β⊥γ,则α∥β,不正确,在此条件下,两平面α,β可以相交,对于B选项,若m⊥α,m⊥β,则α∥β,根据垂直于同一条直线的两个平面平行,正确,对于C选项,m⊥β,α⊥β,则m∥α,同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行,故C不正确,对于D选项,n⊥m,n⊥α,则m∥α,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行,故D不正确.故选B.8.已知,函数,下列四个命题:①f(x)是周期函数,其最小正周期为2π;②当时,f(x)有最小值;③是函数f(x)的一个单调递增区间;④点是函数f(x)的一个对称中心.正确命题的个数是()A.0 B.1 C.2 D.3参考答案:D【考点】9R:平面向量数量积的运算;2K:命题的真假判断与应用.【分析】利用数量积运算性质、倍角公式、两角和差的正弦公式可得:函数=+2.再利用三角函数的图象与性质即可判断出正误.【解答】解:∵函数====+2.对于①:函数f(x)的周期为,∴①为错误的;对于②:当时,f(x)取得最小值,此时,即,当k=0时,,∴②为正确的;对于③:令,解得,∴函数f(x)的增区间为,当k=﹣1时,函数f(x)的增区间为,∴③为正确的;对于④:令=kπ(k∈Z),解得,∴函数f(x)的对称中心为,当k=0时,得点是函数f(x)的一个对称中心,∴④为正确的.综上所述,②③④是正确的命题.故选:D.【点评】本题考查了数量积运算性质、倍角公式、两角和差的正弦公式、三角函数的图象与性质,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.9.正四面体的侧面三角形的高线中,其“垂足”不在同一侧面上的任意两条所成角的余弦值是(
)(A)
(B)
(C)
(D)参考答案:C10.命题若,则是的充分而不必要条件;
命题函数的定义域是,则
(
)A.“或”为假
B.“且”为真
C.真假
D.假真参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知,记,…,
,则…________.参考答案:略12.已知可导函数的导函数满足>,则不等式的解集是
.参考答案:
(0,+∞)
略13.设,则_______________.参考答案:【分析】先令可求出的值,然后利用可得出,然后将两式相减可得出代数式的值。【详解】,令可得,令可得,因此,,故答案为:.【点睛】本题考查二项展开式项的系数和,一般利用赋值法来求解,赋值如下:设,则(1);(2);(3).14.设函数给出下列四个命题:①当时,是奇函数;②当时,方程只有一个实数根;③的图像关于点对称;④方程至多有两个实数根.
其中正确的命题有
.ks5u参考答案:①②③15.已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=.参考答案:12【分析】画出图形,利用中点坐标以及椭圆的定义,即可求出|AN|+|BN|的值.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,是对基本知识的考查.16.在长方体ABCD—A1B1C1D1中,A1A=AB=2,若棱AB上存在一点P,使得D1P⊥PC,则棱AD的长的取值范围是______________.
参考答案:略17.在△ABC中,三个角A,B,C所对的边分别为a,b,c.若角A,B,C成等差数列,且边a,b,c成等比数列,则△ABC的形状为__________.参考答案:等边三角形角,,成等差数列,则,,解得,边,,成等比数列,则,余弦定理可知,故为等边三角形.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的焦点坐标分别为和,且过点,求椭圆的标准方程.参考答案:19.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件。(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值。参考答案:(1)分公司一年的利润(万元)与售价的函数关系式为:(2)令,得或(不合题意,舍去)∵,∴在的两侧,的值由正变负。①当即时,②当即时,
所以答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为时,元时,分公司一年的利润最大,最大值(万元)。20.已知,若是充分而不必要条件,求实数的取值范围.参考答案:由题意p:
∴
∴:
(3分)
q:
∴:
(3分)又∵是充分而不必要条件∴
∴
(4分)21.已知集合,,.(1)求A∩B;(2)若“x∈C”是“x∈A∩B”的必要不充分条件,求实数a的取值范围.参考答案:解:(1),
…………2分.
……4分则
………………6分(2),因为“”是“”的必要不充分条件,所以且.
……………………10分由,得,解得.
……………………12分经检验,当时,成立,故实数的取值范围是.
……………………14分
22.(本小题满分14分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计男生
5
女生10
合计
50已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求和不全被选中的概率.参考答案:解:(1)列联表补
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《型班组建设的内》课件
- 《外科常用手术器械》课件
- 《大型企业物流介绍》课件
- 2025年乌兰察布货运车从业考试题
- 《行文制度》课件
- 《城市地下街设计》课件
- 第一单元 青春时光(B卷·能力提升练) 带解析
- 旅游景点设施使用与管理制度
- 养殖场环保工程师招聘合同
- 企业年会演员聘请模板
- 旧房翻新培训课件教学
- 2023-2024学年安徽省芜湖市无为市八年级(上)期末数学试卷(含解析)
- 《反渗透系统简介》课件
- 医疗安全不良事件警示教育课件
- illustrator练习试题附答案
- 华为公司管理决策流程
- 车辆理赔权益转让协议
- 《我的家乡天津》课件
- 部编版四年级上册《麻雀》说课课件
- 操作规程仓管员发货员安全操作规程
- 监理分包合同协议书
评论
0/150
提交评论