山西省朔州市汴子疃中学2022年高二数学理月考试题含解析_第1页
山西省朔州市汴子疃中学2022年高二数学理月考试题含解析_第2页
山西省朔州市汴子疃中学2022年高二数学理月考试题含解析_第3页
山西省朔州市汴子疃中学2022年高二数学理月考试题含解析_第4页
山西省朔州市汴子疃中学2022年高二数学理月考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市汴子疃中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在区间 C.(﹣∞,5) D.(﹣∞,5]参考答案:B【考点】6B:利用导数研究函数的单调性.【分析】要使函数f(x)在区间(1,+∞)上是减函数,我们可以转化为f′(x)≤0在区间(1,+∞)上恒成立的问题来求解,然后利用二次函数的单调区间于对称轴的关系来解答也可达到目标.【解答】解:∵函数,在区间.故选:B.【点评】本题以函数为载体,综合考查利用函数的导数来解决有关函数的单调性,考查已知函数的单调性的条件下怎样求解参数的范围问题,考查分类讨论,函数与方程,等数学思想与方法.2.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.

B.

C.

D.参考答案:A略3.若f(x)=f1(x)=,fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+fn(1)=()A.n

B. C.

D.1参考答案:A4.一个长方体,其正视图面积为,侧视图面积为,俯视图面积为,则长方体的外接球的表面积为(

)A.

B.

C.

D.参考答案:A5.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30° B.45° C.60° D.90°参考答案:A【考点】直线的倾斜角.【专题】直线与圆.【分析】利用两点的坐标,求出直线的斜率,从而求出该直线的倾斜角.【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.【点评】本题考查了利用两点的坐标求直线的斜率与倾斜角的应用问题,是基础题目.6.若正实数满足则

A.有最大值

B.有最小值

C.有最大值

D.有最小值参考答案:C7.函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是()A.(﹣∞,0) B.[﹣3,+∞) C.[﹣3,0] D.(0,+∞)参考答案:C【考点】3W:二次函数的性质.【分析】由于函数解析式的二次项系数a不确定,故要分a=0,a>0和a<0时,三种情况结合二次函数和一次函数的图象和性质进行分析,最后综合讨论结果,可得答案.【解答】解:当a=0时,f(x)=﹣6x+1,∵﹣6<0,故f(x)在R上单调递减满足在区间[﹣2,+∞)上递减,当a>0时,二次函数在对称轴右侧递增,不可能在区间[﹣2,+∞)上递减,当a<0时,二次函数在对称轴右侧递减,若函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,仅须﹣≤﹣2,解得﹣3≤a<0综上满足条件的实数a的取值范围是[﹣3,0]故选:C.8.当时,下面的程序段执行后所得的结果是(

)

A.

B.

C.

D.参考答案:C9.以下说法错误的是()A.推理一般分为合情推理和演绎推理B.归纳是从特殊到一般的过程,它属于合情推理C.在数学中,证明命题的正确性既能用演绎推理又能用合情推理D.演绎推理经常使用的是由大前提、小前提得到结论的三段论推理参考答案:C【考点】F2:合情推理的含义与作用.【分析】根据归纳推理、类比推理、演绎推理、合情推理的定义,即可得到结论.【解答】解:推理一般分为合情推理和演绎推理,故A正确所谓归纳推理,就是从个别性知识推出一般性结论的推理,是从特殊到一般的推理过程,故B正确在数学中,证明命题的正确性能用演绎推理但不能用合情推理,故C错误演绎推理一般模式是“三段论”形式,即大前提小前提和结论,故D正确,故选C.10.设函数,则(

)A.

B.

C.

D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.直线x﹣y+1=0被圆x2+y2﹣2x﹣3=0所截得的弦长为.参考答案:2考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:由圆的方程求出圆心和半径,求出圆心到直线x﹣+1=0的距离d的值,再根据弦长公式求得弦长.解答:解:圆x2+y2﹣2x﹣3=0,即(x﹣1)2+y2=4,表示以C(1,0)为圆心,半径等于2的圆.由于圆心到直线x﹣+1=0的距离为d==1,故弦长为2=2.故答案为:2.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于中档题.12.求值:________.参考答案:13.曲线上的点到直线的最短距离是

.参考答案:直线斜率是2,y'==2,x=,即y=ln上(,ln)处切线斜率是2所以切线是y-ln()=2(x-),2x-y-1-ln2=0,则和2x-y+3=0的距离就是最短距离在2x-y+3=0上任取一点(0,3),到2x-y-1-ln2=0距离=。

14.命题“?x∈R,ax2﹣2ax+3>0恒成立”是真命题,则实数a的取值范围是

.参考答案:0≤a<3【考点】命题的真假判断与应用.【分析】若命题“?x∈R,ax2﹣2ax+3>0恒成立”是真命题,则a=0,或,解得实数a的取值范围.【解答】解:若命题“?x∈R,ax2﹣2ax+3>0恒成立”是真命题,则a=0,或,解得:0≤a<3,故答案为:0≤a<3.15.如图所示,平面α⊥平面β,在α与β的交线l上取线段AB=4cm,AC,BD分别在平面α和平面β内,AC⊥l,BD⊥l,AC=3cm,BD=12cm,则线段CD的长度为

_____________.参考答案:13略16.在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则cos2α+cos2β=1.类比到空间中一个正确命题是:在长方体ABCD﹣A1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则有

.参考答案:cos2α+cos2β+cos2γ=2【考点】F3:类比推理.【分析】本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,根据长方体性质可以类比推断出空间性质,从而得出答案.【解答】解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据长方体性质可以类比推断出空间性质,∵长方体ABCD﹣A1B1C1D1中,对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,∴cos2α+cos2β+cos2γ===2.故答案为:cos2α+cos2β+cos2γ=2.【点评】本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.17.已知则的最小值是

.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知

(mR)(Ⅰ)当时,求函数在上的最大,最小值。(Ⅱ)若函数在上单调递增,求实数的取值范围;参考答案:(Ⅰ),;(Ⅱ)试题分析:(Ⅰ)当时,令得,易知是函数在上唯一的极小值点,故.计算并比较的大小可得;(Ⅱ)若函数在上单调递增,则在上恒成立,所以.试题解析:(Ⅰ)当时,,令得当时,当时,故是函数在上唯一的极小值点,故.又,,故(Ⅱ),若函数在上单调递增,则在上恒成立,即在上恒成立,即即其取值范围为.19.如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.(1)求证:平面;(2)设点在棱上,当为何值时,平面平面?参考答案:(1)连接交于,连接.因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.………………4分OF面ADF,平面,所以平面.…………7分(2)当BM=1时,平面平面.在直三棱柱中,由于平面ABC,BB1平面B1BCC1,所以平面B1BCC1平面ABC.由于AB=AC,是中点,所以.又平面B1BCC1∩平面ABC=BC,所以AD平面B1BCC1.而CM平面B1BCC1,于是ADCM.…10分因为BM=CD=1,BC=CF=2,所以≌,所以CMDF.…12分DF与AD相交,所以CM平面.CM平面CAM,所以平面平面.………15分当BM=1时,平面平面.…………………16分20.(本小题满分12分)已知曲线y=x3+x-2在点P0处的切线

平行直线4x-y-1=0,且点P0在第三象限,⑴求P0的坐标;⑵若直线

,且l也过切点P0,求直线l的方程.参考答案:解:⑴由y=x3+x-2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=-1时,y=-4.又∵点P0在第三象限,∴切点P0的坐标为(-1,-4).⑵∵直线,的斜率为4,∴直线l的斜率为,∵l过切点P0,点P0的坐标为(-1,-4)∴直线l的方程为即.略21.已知动圆过定点P(2,0),且在y轴上截得弦长为4.(1)求动圆圆心的轨迹Q的方程;(2)已知点E(m,0)为一个定点,过E作斜率分别为k1、k2的两条直线交轨迹Q于点A、B、C、D四点,且M、N分别是线段AB、CD的中点,若k1+k2=1,求证:直线MN过定点.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(1)设动圆圆心为O1(x,y),动圆与y轴交于R,S两点,由题意,得|O1P|=|O1S|,由此得到=,从而能求出动圆圆心的轨迹Q的方程.(2)由,得,由已知条件推导出M(),N(),由此能证明直线MN恒过定点(m,2).【解答】(1)解:设动圆圆心为O1(x,y),动圆与y轴交于R,S两点,由题意,得|O1P|=|O1S|,当O1不在y轴上时,过O1作O1H⊥RS交RS于H,则H是RS的中点,∴|O1S|=,又|O1P|=,∴=,化简得y2=4x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y2=4x,∴动圆圆心的轨迹Q的方程为y2=4x.(2)证明:由,得,,y1y2=﹣4m,AB中点M(),∴M(),同理,点N(),∴=,∴MN:,即y=k1k2(x﹣m)+2,∴直线MN恒过定点(m,2).【点评】本题考查点的轨迹方程的求法,考查直线过定点的证明,解题时要认真审题,注意中点坐标公式的合理运用.22.

设:方程表示双曲线;

:函数在R上有极大值点和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论