下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市开发区实验中学2022年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(3分)圆心在曲线上,且与直线2x+y+1=0相切的面积最小的圆的方程为() A. (x﹣1)2+(y﹣2)2=5 B. (x﹣2)2+(y﹣1)2=5 C. (x﹣1)2+(y﹣2)2=25 D. (x﹣2)2+(y﹣1)2=25参考答案:A考点: 圆的切线方程;圆的标准方程.专题: 计算题.分析: 设出圆心坐标,求出圆心到直线的距离的表达式,求出表达式的最小值,即可得到圆的半径长,得到圆的方程,推出选项.解答: 设圆心为,则,当且仅当a=1时等号成立.当r最小时,圆的面积S=πr2最小,此时圆的方程为(x﹣1)2+(y﹣2)2=5;故选A.点评: 本题是基础题,考查圆的方程的求法,点到直线的距离公式、基本不等式的应用,考查计算能力.2.已知直线l1:(m﹣2)x﹣y+5=0与l2:(m﹣2)x+(3﹣m)y+2=0平行,则实数m的值为()A.2或4 B.1或4 C.1或2 D.4参考答案:A【考点】直线的一般式方程与直线的平行关系.【分析】对m分类讨论,利用两条直线平行的充要条件即可得出.【解答】解:∵l1∥l2,∴m﹣2=0时,两条直线化为:﹣y+5=0,y+2=0,此时两条直线平行.m﹣2≠0时,≠,解得m=4.综上可得:m=2或4.故选:A.3.下列四个函数中,在上是增函数的是(
)
A、
B、
C、
D、参考答案:C4.在△ABC中,已知(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),则△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形参考答案:D【考点】GZ:三角形的形状判断.【分析】利用两角和与差的正弦将已知中的弦函数展开,整理后利用正弦定理将“边”化角的“正弦”,利用二倍角的正弦公式即可求得答案.【解答】解:∵(a2+b2)(sinAcosB﹣cosAsinB)=(a2﹣b2)(sinAcosB+cosAsinB),∴a2sinAcosB﹣a2cosAsinB+b2sinAcosB﹣b2cosAsinB=a2sinAcosB+a2cosAsinB﹣b2sinAcosB﹣b2cosAsinB,整理得:a2cosAsinB=b2sinAcosB,在△ABC中,由正弦定理==2R得:a=2RsinA,b=2RsinB,代入整理得:sinAcosA=sinBcosB,∴2sinAcosA=2sinBcosB,∴sin2A=sin2B,∴2A=2B或者2A=180°﹣2B,∴A=B或者A+B=90°.∴△ABC是等腰三角形或者直角三角形.故选D.5.设集合,集合,,则等于(
)A.
B.
C.
D.参考答案:B略6.在锐角三角形ABC中,下列各式恒成立的是
(
)A.
B.C.
D.参考答案:A略7.已知
(
)A. B.
C.
D.参考答案:B略8.为加强我市道路交通安全管理,有效净化城市交通环境,预防和减少道路交通事故的发生,交管部门在全市开展电动车专项整治行动值勤交警采取蹲点守候随机抽查的方式,每隔分钟检查一辆经过的电动车这种抽样方法属于(
)A.简单随机抽样 B.定点抽样C.分层抽样 D.系统抽样参考答案:D9.如果,那么的取值范围是A.
B.
C.
D.参考答案:B10.(5分)已知sin(﹣α)=,α∈(﹣,0),则tanα等于() A. B. ﹣ C. 2 D. ﹣2参考答案:D考点: 同角三角函数基本关系的运用;运用诱导公式化简求值.专题: 计算题;三角函数的求值.分析: 由已知先求sinα,即可求得cosα,tanα的值.解答: 解:∵sin(﹣α)=,α∈(﹣,0),∴sinα=﹣,∴cosα=,∴tanα==﹣2,故选:D.点评: 本题主要考察了诱导公式,同角三角函数关系式的应用,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在空间直角坐标系中,点与点的距离为
参考答案:
12.已知等比数列{an}满足:,,且,则______;q=______.参考答案:
【分析】根据条件列方程组解得首项与公比,再求.【详解】因为,所以或,因为,所以【点睛】本题考查等比数列首项与公比,考查基本分析求解能力,属中档题.13.若,则=
.参考答案:14.直线过点,则其斜率为.参考答案:15.已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:①若α//β,mα,nβ,则m//n;②若m,nα,m//β,n//β,则α//β;③若m//α,nα,则m//n;④若m//n,m⊥α,则n⊥α。其中真命题的序号是__________。参考答案:略16.函数满足,,且对任意正整数n,都有,则的值为
.参考答案:
解析:记,
所以
所以
故17.一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为__________cm3。
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(8分)已知集合,,,且,求的取值范围。参考答案:,当时,,而
则
这是矛盾的;当时,,而,19.已知电流I与时间t的关系式为.(1)如图是在一个周期内的图象,根据图中数据求的解析式;(2)如果t在任意一段秒(包含秒)的时间内,电流都能取得最大值和最小值,那么的最小正整数值是多少?参考答案:(1);(2)943.【分析】(1)由已知中函数的图象,我们可以分析出函数的最大值,最小值,周期及特殊点坐标,根据函数的解析式中参数与函数性质的关系,易得到函数的解析式.(2)由已知中如果在任意一段秒的时间内,电流都能取得最大值和最小值,则函数的周期,则易求出满足条件的ω值.【详解】(1)由图可知,设,则周期,
时,,即,而故
(2)依题意,周期即
又故最小正周期【点睛】本题主要考查了由图象求的解析式以及最值问题,属于中档题.20.作出函数的图象,并指出函数的单调区间参考答案:解析:
21.已知数列的前项和.(1)证明数列为等差数列,求出数列的通项公式.(2)若不等式对任意恒成立,求的取值范围.参考答案:见解析.解:()当时,得,当时,,,两式相减得,即,∴,又,∴数列是以为首项,为公差的等差数列.()由()知,即,∵,∴不等式等价于,记,时,,∴当时,,,∴,即,∴的取值范围是:.22.设△ABC的内角A、B、C所对的边长分别为a、b、c,且a2+c2=b2+6c,bsinA=4.(1)求边长a;(2)若△ABC的面积S=10,求cosC的值.参考答案:【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由余弦定理可求得acosB=3,又bsinA=4,从而可求,结合同角三角函数关系式即可求得sinB,cosB的值,从而可求a的值.(2)由三角形面积公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行资金调配指南
- 防水工程维护设计合同
- 环保设施三方施工合同
- 医疗保健中心租赁合同模板
- 2024年资产托管经营合同3篇
- 2024年防水工程培训分包协议3篇
- 山东省农业设施装修工程合同模板
- 2025油漆采购合同2
- 2025年度环境风险评估与监测合同书模板
- 2024年度工程贷款担保合同3篇
- pvc电缆保护管工艺
- 医保缴费问题排查整改报告
- 2024年黑龙江高中学业水平合格性考试数学试卷试题(含答案详解)
- 《登高作业安全培训》课件
- 2024年度医院财务部述职报告课件
- 浙江省杭州市余杭区2023-2024学年五年级上学期1月期末道德与法治试题
- 2023-2024学年二年级数学上册期末乐考非纸笔测试题(一)苏教版
- 语法-ed-分词-课件
- 学生信息技术应用实践
- Android移动应用开发基础教程-教案
- 人工智能技术在中小学教育中的应用案例分享
评论
0/150
提交评论