版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015中考试题分析----28题燕山星城中学马艳明2015年12月23日28.在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)试题背景2015年北京中考数学命题的主要特点:
特点一,重视基础,得基础者得高分
特点二,代数压轴题难度下降
特点三,几何压轴题难度基本持平
特点四,强调画图能力
特点五,强调运用能力特点六,阅读量加大
特点七,出现新题型
本题是一道几何压轴题,难度变化不大,与2014年基本持平,但是它在整个题目出题特点上具有一些新颖的特征。特色解读一.与前几年对比,难度基本持平
相当于2010年到2014年解答题第24题,这道题往往都考察的是几何综合。2010年几何综合考察的是二次函数与三角形,2011年考察的几何综合跟旋转相关,2012年考察的几何综合跟轴对称相关,2013年考察的几何综合旋转相关,2014年考察的几何综合包括画图、轴对称以及模型的运用,今年的几何综合考察了平移做图、旋转型全等,难度基本持平。二.强调画图能力,考察基本解题能力第一问,两个小题,都要清晰的按照题目的要求画出图形,强调了画图能力,第二问同样要依题意画出图形,在平移之后,出现了152度角,而我们在课堂上和练习时经常见的角度有30度、45度、60度、120度、135度、150,甚至还有36度、20度、80度、76度。今年出现了一种不常见的角度152度,考察了学生的基本解题能力。特色解读特色解读三.问题答案开放,体现不同思维个问题较为开放,表示方法并不单一,实际上如果我们解出这道问题的答案并不是很难的,关键是学生对于求完了答案之后,感觉对还是不对是存在不确定性的,所以整个28题难度系数,基本和去年持平,再有一点不要被一些新颖的问法给唬到,我们只要按照题目给的有效信息,认真地梳理,最后这道题应该大部分学生都可以解决。解法研究考点:四边形综合题.此题以正方形为大环境,考察旋转、平移、四点共圆、解三角形等知识点.分析:(1)①根据题意画出图形即可;②方法1.连接CH,先根据正方形的性质得出△DHQ是等腰直角三角形,再由SSS定理得出△HDP≌△HQC,故PH=CH,∠HPC=∠HCP,由正方形的性质即可得出结论;②方法2.四点共圆方法(2)只要求给出计算方案而不要求计算结果,提问方式新颖。方法1.根据四边形ABCD是正方形,QH⊥BD可知△DHQ是等腰直角三角形,再由平移的性质得出PD=CQ.作HR⊥PC于点R,由∠AHQ=152°,可得出∠AHB及∠DAH的度数,设DP=x,则DR=HR=RQ,由锐角三角函数的定义即可得出结论.解法研究解法研究(2)方法2.利用Rt△ADP、Rt△AHP共斜边,得出A、P、D、H四点共圆,圆心为斜边AP的中点.利用共圆倒角,得出。(2)方法3.根据四边形ABCD是正方形,QH⊥BD可知△DHQ是等腰直角三角形,再由平移的性质得出PD=CQ.由∠AHQ=152°,可得出∠AHB及∠DAH的度数,再由三角形APH是等腰直角三角形求出∠PAD,由锐角三角函数的定义即可得出结论.解法研究解:(1)①如图1;
②如图1,连接CH,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵DP=CQ,在△HDP与△HQC中.∵
,∴△HDP≌△HQC(SSS),解法研究∴PH=CH,∠HPC=∠HCP.∵BD是正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴∠AHP=180°﹣∠ADP=90°,∴AH=PH,AH⊥PH.②方法2.四点共圆作法.同上得:∠HPC=
∠DAH∴A、D、P、H共圆∴∠AHP=90°
,∠APH=
∠ADH=45°∴△APH等腰Rt△解法研究(2)如图2,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵△BCQ由△ADP平移而成,∴PD=CQ.作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°.解法研究设DP=x,则DR=HR=RQ=.∵tan17°=,即tan17°=,∴x=.解法研究(2)法二:四点共圆作法A、H、D、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大学物理2》课程教学大纲
- 2024年伐木劳务承包合同范本
- 2024年代销电缆线合作协议书模板
- 2024年传家电视剧大姐离婚协议书模板
- 儿童肺炎的预防护理
- 《社会调查》教材笔记
- 可疑深部组织损伤期护理
- 医学生护理计划
- 2024新版棉花买卖合同
- 2024农村土地承包合同无效
- 华为认证无线工程师H35-460考试题及答案
- 保安公司转让合同范例
- 人教版六年级语文上册第六单元习作:《学写倡议书》授课课件
- 2024保密知识教育考试题及答案(基础+提升)
- 《脑卒中后吞咽障碍的康复研究进展》
- 视光门诊年终总结及计划
- 汉语拼音默写表及拼读专练
- 《汽车保险与理赔》-教学设计
- 超市营运培训教案公开课
- 2024年新华社招聘笔试参考题库附带答案详解
- 菊花课件教学课件
评论
0/150
提交评论