版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.-5的相反数是()A.5 B. C. D.2.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m3.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A. B. C. D.4.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥3 B.a>3 C.a≤3 D.a<35.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣16.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A.5 B.6 C.7 D.87.计算2a2+3a2的结果是()A.5a4 B.6a2 C.6a4 D.5a28.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A. B. C. D.9.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.310.-sin60°的倒数为()A.-2 B. C.- D.-二、填空题(本大题共6个小题,每小题3分,共18分)11.若4a+3b=1,则8a+6b-3的值为______.12.已知关于x的方程x2+(1-m)x+m13.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.14.直线y=2x+1经过点(0,a),则a=________.15.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.16.方程组的解是________.三、解答题(共8题,共72分)17.(8分)解不等式组:并求它的整数解的和.18.(8分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.(问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.19.(8分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.22.(10分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.23.(12分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8.(1)求m,n的值;(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.24.如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.2、B【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.3、B【解析】
匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.4、A【解析】
先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【详解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、B【解析】
∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.6、B【解析】
根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键7、D【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.8、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正确,不符合题意;B、在Rt△ABC中,sinα=,故B正确,不符合题意;C、在Rt△ACD中,sinα=,故C正确,不符合题意;D、在Rt△ACD中,cosα=,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9、C【解析】
延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.10、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1【解析】
先求出8a+6b的值,然后整体代入进行计算即可得解.【详解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案为:-1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.12、1.【解析】试题分析:∵关于x的方程x2∴Δ=(1-m)∴m的最大整数值为1.考点:1.一元二次方程根的判别式;2.解一元一次不等式.13、1:3【解析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.14、1【解析】
根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【详解】∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为1.15、【解析】
设AC=x,则AB=2x,根据面积公式得S△ABC=2x,由余弦定理求得cosC代入化简S△ABC=,由三角形三边关系求得,由二次函数的性质求得S△ABC取得最大值.【详解】设AC=x,则AB=2x,根据面积公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三边关系有,解得,故当时,取得最大值,
故答案为:.【点睛】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.16、【解析】
利用加减消元法进行消元求解即可【详解】解:由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程组的解为:故答案为:【点睛】本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.三、解答题(共8题,共72分)17、0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.18、(1);(2)见解析;(3)【解析】
(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【详解】(1)如图1,过点C作CE∥OA交BD于点E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.19、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20、(1)0≤x<20;(2)降价2.5元时,最大利润是6125元【解析】
(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.
(2)将所得函数解析式配方成顶点式可得最大值.【详解】(1)根据题意得y=(70−x−50)(300+20x)=−20x2+100x+6000,∵70−x−50>0,且x≥0,∴0≤x<20.(2)∵y=−20x2+100x+6000=−20(x−)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.21、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到结果.【详解】(1)由题意知:解得∴二次函数的表达式为(2)在中,令y=0,则解得:∴B(3,0),由已知条件得直线BC的解析式为y=−x+3,∵AD∥BC,∴设直线AD的解析式为y=−x+b,∴0=1+b,∴b=−1,∴直线AD的解析式为y=−x−1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要当:或时,△PBC∽△ABD,解得D(4,−5),∴设P的坐标为(x,0),即或解得或x=−4.5,∴或P(−4.5,0),②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴当时,的最大值为【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.22、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.【解析】
(1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
(2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【详解】解:设每盒售价元.依题意得:解得:答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元依题意:令:化简:解得:(舍),答:的值为.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.23、(1)m=8,n=-2;(2)点F的坐标为,【解析】分析:(1)利用三角形的面积公式构建方程求出n,再利用待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为,.②图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.详解:(1)如图②∵点A的坐标为,点C与点A关于原点O对称,∴点C的坐标为.∵AB⊥x轴于点B,CD⊥x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不锈钢的基础知识王文华
- (2024)柑桔果渣综合利用建设项目可行性研究报告(一)
- 2022-2023学年天津市河北区高二(上)期末语文试卷
- 2023年高收缩腈纶项目融资计划书
- 烹饪原料知识习题库(含参考答案)
- 《养生与防治》课件
- 养老院老人生活照料标准制度
- 养老院老人健康饮食营养师表彰制度
- 人教版教学课件免疫调节(上课)
- 《石油和油品》课件
- Unit 1 Making friends Part B Lets learn(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 防火门及防火卷帘施工方案
- 湖南省2025届高三九校联盟第一次联考 生物试卷(含答案详解)
- 广东省广州市越秀区2022-2023学年八年级上学期期末历史试题(含答案)
- 2024年初级招标采购从业人员《招标采购专业实务》考前必刷必练题库600题(含真题、必会题)
- 【MOOC】跨文化交际通识通论-扬州大学 中国大学慕课MOOC答案
- 学历提升之路
- 辽宁省大连市沙河口区2022-2023学年八年级上学期物理期末试卷(含答案)
- 做账实操-鞋厂的账务处理
- 腰穿术护理常规
- 2021-2022学年统编版道德与法治五年级上册全册单元测试题及答案(每单元1套共6套)
评论
0/150
提交评论