版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是()A. B.C. D.2.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>03.的化简结果为A.3 B. C. D.94.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱5.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A. B.C. D.6.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.37.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.48.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥9.下列计算正确的是()A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=210.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣201811.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A. B. C. D.12.点是一次函数图象上一点,若点在第一象限,则的取值范围是().A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.14.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=________15.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.16.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3,=__.17.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.18.如果点P1(2,y1)、P2(3,y2)在抛物线上,那么y1______y2.(填“>”,“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.20.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.21.(6分)先化简,再求值:,其中22.(8分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?23.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).24.(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)25.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.26.(12分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.27.(12分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【详解】解:∵DE∥BC,∴=,BD≠BC,∴≠,选项A不正确;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,选项B不正确;∵EF∥AB,∴=,选项C正确;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,选项D不正确;故选C.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.2、C【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.3、A【解析】试题分析:根据二次根式的计算化简可得:.故选A.考点:二次根式的化简4、A【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.
故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..5、B【解析】
找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.6、C【解析】
根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.【详解】①(﹣2a2)3=﹣8a6,错误;②(x﹣2)(x+3)=x2+x﹣6,错误;③(x﹣2)2=x2﹣4x+4,错误④﹣2m3+m3=﹣m3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选C.【点睛】考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.7、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质8、A【解析】
侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.9、B【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A.,故A选项错误。B.,故B选项正确。C.,故C选项错误。D.,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。10、A【解析】
根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=,故选项D错误.故选A.【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.11、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.12、B【解析】试题解析:把点代入一次函数得,.∵点在第一象限上,∴,可得,因此,即,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.【详解】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案为:.【点睛】此题考查解直角三角形的应用,解题的关键在于做辅助线.14、1【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.详解:设D(a,),
∵点D为矩形OABC的AB边的中点,
∴B(2a,),
∴E(2a,),
∵△BDE的面积为1,
∴•a•(-)=1,解得k=1.
故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.15、1【解析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、4﹣【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移抛物线L使该抛物线过点B,∴AB=BC=1,∴AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,设OK=t,则AB=BC=1t,∴B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵该抛物线过点B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案为(1)4;(1)﹣.点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.17、12【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.【详解】∵摸到红球的频率稳定在0.25,
∴解得:a=12故答案为:12【点睛】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.18、>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)41(2)15%(3)【解析】
(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.20、(1)120,54;(2)补图见解析;(3)660名;(4).【解析】
(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.【详解】解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,故答案为120、54;(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),条形统计图为:(3)1200×=660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.21、;.【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.【详解】解:原式==把代入得:原式=.【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.22、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.23、CD的长度为17﹣17cm.【解析】
在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的长度为17﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.24、(1)(2),图形见解析.【解析】
(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下∴P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.25、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国厚料仪器数据监测研究报告
- 2024年天津市中考语文试题含答案
- 2024年中国玻璃钢模压制品市场调查研究报告
- 2024年中国注塑网板市场调查研究报告
- 2012年事业单位考试公共基础知识单选题题库
- 2024年中国散热器手动调节阀市场调查研究报告
- 电影节安保工作总结与经验分享计划
- 村级公路损坏修复协议书
- 合理安排会计工作时间表计划
- 北京技术合同登记实务
- 第5课 推动高质量发展
- 数字孪生赋能智慧城市大脑建设方案相关 两份资料
- 2024至2030年中国购物中心市场深度分析及发展前景预测研究报告
- 基于项目式学习的初中数学“综合与实践”教学研究
- 小学六年级上 生命生态安全 第10课《预防血吸虫病》课件
- 2024-2030年中国分布式温度感测(DTS)行业市场发展趋势与前景展望战略分析报告
- CJT 497-2016 城市轨道交通桥梁伸缩装置
- 基于SAP锂电池数字化转型总体蓝图架构设计解决方案三个文档
- 二十世纪中国文学经典与电影智慧树知到期末考试答案章节答案2024年西华大学
- 《鱼骨图分析讲解》课件
- T-WSJD 51-2024 医疗机构消毒供应中心用水卫生要求
评论
0/150
提交评论