版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Sunday,February5,2023
(一)2.1.1指数与指数幂的运算22=4(-2)2=4构建数学(一)探求n次方根的概念
回顾初中知识,根式是如何定义的?有那些规定?①如果一个数的平方等于a,则这个数叫做a的平方根.②如果一个数的立方等于a,则这个数叫做a
的立方根.2,-2叫4的平方根.2叫8的立方根.-2叫-8的立方根.23=8(-2)3=-824=16(-2)4=162,-2叫16的4次方根;2叫32的5次方根;2叫a的n次方根;x叫a的n次方根.xn
=a2n=
a25=32归纳总结…………通过类比方法,可得n次方根的定义.1.方根的定义如果xn=a,那么x叫做
a
的n次方根(nthroot),其中n>1,且n∈N*.24=16(-2)4=1616的4次方根是±2.(-2)5=-32-32的5次方根是-2.2是128的7次方根.27=128即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a的n次方根.概念理解
【1】试根据n次方根的定义分别求出下列各数的n次方根.(1)25的平方根是_______;(2)27的三次方根是_____;(3)-32的五次方根是____;(4)16的四次方根是_____;(5)a6的三次方根是_____;(6)0的七次方根是______.点评:求一个数a的n次方根就是求出哪个数的n次方等于a.±53-2±20a223=8(-2)3=-8(-2)5=-3227=1288的3次方根是2.-8的3次方根是-2.-32的5次方根是-2.128的7次方根是2.奇次方根
1.正数的奇次方根是一个正数,
2.负数的奇次方根是一个负数.(二)n次方根的性质72=49(-7)2=4934=81(-3)4=8149的2次方根是7,-7.81的4次方根是3,-3.偶次方根
2.负数的偶次方根没有意义
1.正数的偶次方根有两个且互为相反数
26=64(-2)6=6464的6次方根是2,-2.正数的奇次方根是正数.负数的奇次方根是负数.零的奇次方根是零.(二)n次方根的性质(1)奇次方根有以下性质:(2)偶次方根有以下性质:正数的偶次方根有两个且是相反数,负数没有偶次方根,零的偶次方根是零.
根指数根式(三)根式的概念被开方数由xn
=a
可知,x叫做a的n次方根.9-8归纳总结1当n是奇数时,对任意a∊R都有意义.它表示a在实数范围内唯一的一个n次方根.当n是偶数时,只有当a≥0有意义,当a<0时无意义.表示a在实数范围内的一个n次方根,另一个是归纳总结2式子
对任意a∊R都有意义.结论:an开奇次方根,则有结论:an开偶次方根,则有公式1.(四)n次方根的运算性质适用范围:①当n为大于1的奇数时,a∈R.②当n为大于1的偶数时,a≥0.公式2.适用范围:n为大于1的奇数,a∈R.公式3.适用范围:n为大于1的偶数,a∈R.=
-8;=10;例1.求下列各式的值数学运用①④【1】下列各式中,不正确的序号是().练一练解:练一练【2】求下列各式的值.例2.填空:
(1)在这四个式子中,没有意义的是________.
(2)若则a的取值范围是______.
(3)已知a,b,c为三角形的三边,则例3.计算解:课堂小结2.根式的性质
(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号
表示.1.根式定义(2)当n为偶数时,正数a的n次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 圆拉刀课程设计
- 幼儿大自然剪影课程设计
- 租赁市场合同纠纷化解工作方案
- 智能物流管理系统合同
- 中行采购合同
- 代加工面条合同范文
- 印刷品购销合同
- 圣诞用品买卖合同(2024年版)
- 三方租赁坑塘光伏协议合同范本
- 夜市美衣馆加盟合同
- 【MOOC】法理学-西南政法大学 中国大学慕课MOOC答案
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 2024蜀绣行业市场趋势分析报告
- 电力法律法规培训
- 北京交通大学《成本会计》2023-2024学年第一学期期末试卷
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 化工企业冬季安全生产检查表格
- 2024年工程劳务分包联合协议
- 蜜雪冰城员工合同模板
评论
0/150
提交评论