材化111-10号-马岩-扩散定律及应用_第1页
材化111-10号-马岩-扩散定律及应用_第2页
材化111-10号-马岩-扩散定律及应用_第3页
材化111-10号-马岩-扩散定律及应用_第4页
材化111-10号-马岩-扩散定律及应用_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

扩散定律及应用材化111-10号马岩

无机材料科学基础2目录§1概述

一、定义

二、分类§2菲克定律及应用

一、菲克第一定律

二、菲克第二定律

三、扩散方程的应用

1、稳态扩散

2、非稳态扩散概述

扩散现象:在房间的某处打开一瓶香水,慢慢在其他地方可以闻到香味。在清水中滴入一滴墨水,在静止的状态下可以看到它慢慢的扩散。在固体材料中也存在扩散,并且它是固体中物质传输的唯一方式。扩散与材料生产和使用中的物理过程有密切关系,例如:凝固、偏析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处理、烧结、氧化、蠕变等等。

扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的

物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。(1)根据有无浓度变化

自扩散:原子经由自己元素的晶体点阵而迁移的扩散。

(纯金属或固溶体的晶粒长大)(无浓度变化)

互扩散:原子通过进入对方元素晶体点阵而导致的扩散。(有浓度变化)(2)根据扩散方向

下坡扩散:原子由高浓度处向低浓度处进行的扩散,又称顺扩散。

上坡扩散:原子由低浓度处向高浓度处进行的扩散,又称逆扩散。从不同的角度对扩散进行分类

(4)按原子的扩散方向分

体扩散:在晶粒内部进行的扩散。短路扩散:表面扩散(在表面进行的扩散);晶界扩散(沿晶界进行的扩散);位错扩散(沿位错线扩散、沿层错面扩散)等。短路扩散的扩散速度比体扩散要快得多。

(3)根据是否出现新相

原子扩散:扩散过程中不出现新相。反应扩散:有新相形成的扩散过程。一、菲克第一定律

(很重要,考计算)菲克(A.Fick)在1855年总结出的,数学表达式为:

J为扩散通量。即:单位时间通过垂直于扩散方向的单位面积的扩散物质通量,单位是g·cm-2·s-1或mol·cm-2·s-1。为溶质原子的浓度梯度。

D是比例系数,称为扩散系数,单位?

负号表示物质总是从浓度高处向浓度低的方向迁移菲克第一定律可直接用于处理稳态扩散问题,此时浓度分布不随时间变化(C/t=0),确定边界条件后,按公式很容易求解。适用条件:稳态扩散(C/t=0)

二、菲克第二定律(公式要掌握)当物质分布浓度随时间变化时,由于不同时间在不同位置的浓度不相同,浓度是时间和位置的函数C(x,t),扩散发生时不同位置的浓度梯度也不一样,扩散物质的通量也不一样。在某一dt的时间段,扩散通量是位置和时间的函数J(x,t)。

单向扩散体的微元体模型在扩散棒中取两个垂直于X轴、相距为dx的平面1,2,其面积均为A,两平面之间夹着一个微小的体积元A·dx。由质量平衡关系得:

输入物质量

-

输出物质量

=

积存物质量若以单位时间计算,则物质输入速率

-

物质输出速率

=

物质积存速率积存速率若用体积浓度(c)的变化率表示积存速率,则?如果D是常数,上式可写为三维情况,设在不同的方向扩散系数为相等的常数,则扩散第二方程为:适用条件:非稳态扩散:C/t≠0或J/x≠01、稳态扩散一厚度为d的薄板的扩散板内任一处的浓度?三、扩散方程的应用

氢在金属中扩散极快,当温度较高、压强较大时,用金属容器储存H2极易渗漏。列出稳态下金属容器中的H2通过器壁扩散的第一方程。说明方程的含义。提出减少氢扩散逸失的措施。贮氢容器令容器表面面积为A,壁厚为b,内外压强为P内,P外。氢在金属容器中的扩散系数为DH。

氢在金属中溶解度与其压强的平方根成正比,即:在稳态下AbP外P内DH

单位面积由扩散造成的逸失量(逸失速度)(2)上式表明(3)减少逸失措施?①形状:A↓。使用球形容器,以使容积一定条件下,A达最小。②选材:利用DH、k值小的金属,如Dγ<Dα。③尺寸:b↑。2、非稳态扩散

扩散方程在渗碳过程中的应用钢的渗碳是将钢(低碳钢,成分为C0)置于具有足够碳势的介质中加热到奥氏体状态并保温,在表面与心部间形成一个碳浓度梯度层的处理工艺。为了分析渗碳过程,可将渗碳工件简化为一根碳浓度为C0的半无限长钢棒。Fe-Fe3C相图左下角及渗碳层

中的碳浓度(质量分数)分布渗层中碳浓度(C)与渗层深度(x)及时间(t)有什么关系呢?

初始条件:t=0时,x≥0,C=C0

边界条件:t>0时,若x=0,则C=CS,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论