电子科技大学-数字电路基础-Chapter 4-1 Switching Algebra_第1页
电子科技大学-数字电路基础-Chapter 4-1 Switching Algebra_第2页
电子科技大学-数字电路基础-Chapter 4-1 Switching Algebra_第3页
电子科技大学-数字电路基础-Chapter 4-1 Switching Algebra_第4页
电子科技大学-数字电路基础-Chapter 4-1 Switching Algebra_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter4

CombinationalLogicDesignPrinciplesLogicCircuitsCombinationallogiccircuitOutputsdependonlyonitscurrentinputsNofeedbackloopSequentiallogiccircuitOutputsdependonitscurrentinputsandpresentstatesFeedbackloopContentsSwitchingAlgebraAxiomsandTheoremsCombinational-CircuitAnalysisCombinational-CircuitSynthesisCombinational-CircuitMinimizationKarnaughMapsTimingHazards4.1SwitchingAlgebraBooleanAlgebra-formulatedbymathematicianGeorgeBoolein1854-basicrelationships&manipulationsforatwo-valuesystemSwitchingAlgebra-

adaptationofBooleanLogictoanalyzeranddescribebehaviorofrelays-ClaudeShannonofBellLabsin1938-thisworksforallswitches(mechanicalorelectrical)-wegenerallyusetheterms"BooleanAlgebra"&"SwitchingAlgebra"interchangeablyBooleanAlgebraWhatisAlgebra

-thebasicsetofrulesthattheelementsandoperatorsinasystemfollow

-theabilitytorepresentunknownsusingvariables

-thesetoftheoremsavailabletomanipulateexpressionsBoolean

-welimitournumbersettotwovalues(0,1)

-welimitouroperatorstoAND,OR,INVAxioms(公理)Axioms

-alsocalled"Postulates"

-minimalsetofbasicdefinitionsthatweassumetobetrue

-allotherderivationsarebasedonthesetruths

-sinceweonlyhavetwovaluesinoursystem,wetypicallydefineanaxiomandthenitscomplement(A1&A1')AxiomsAxiom#1"Identity"

-avariableXcanonlytakeon1or2values(0or1)

(A1)X=0,ifX≠1 (A1')X=1,ifX≠0

Axiom#2"Complement"

-aprimefollowingavariabledenotesaninversionfunction

(A2)ifX=0,thenX'=1 (A2')ifX=1,thenX'=0AxiomsAxiom#3"AND"

-alsocalled"LogicalMultiplication"

-adot(·)isusedtorepresentanANDfunction

(A3)0·0=0 (A3')1+1=1Axiom#4"OR"

-alsocalled"LogicalAddition"

-aplus(+)isusedtorepresentanORfunction

(A4)1·1=1 (A4')0+0=0

AxiomsAxiom#5"Precedence"

-multiplicationprecedesaddition (A5)0·1=1·0=0 (A5')0+1=1+0=1

Try F=0+1·(0+1·0’)’=? =0+1·1’=0TheoremsTheoremsuseourAxiomstoformulatemoremeaningfulrelationships&manipulationsatheoremisastatementofTRUTHthesetheoremscanbeprovedusingourAxiomswecanprovemosttheoremsusing“PerfectInduction“(完全归纳法)Single-VariableTheorems"Identity"(自等律)

X+0=X X·1=X"NullElement"(0-1律)

X+1=1 X·0=0"Involution"(还原律)

(X')'=X

"Idempotency"(同一律)

X+X=X X·X=X

"Complements"(互补律)

X+X'=1 X·X'=0VariablewithConstantVariablewithVariableMulti-VariableTheorems"Commutative"(交换律)

X+Y=Y+X X·Y=Y·X“Associative”(结合律) (X+Y)+Z=X+(Y+Z) (X·Y)·Z=X·(Y·Z)

“Distributive”(分配律) X·(Y+Z)=X·Y+X·Z (X+Y)·(X+Z)=X+Y·Z

likeordinaryalgebraProofsbyexhaustion: Letvariablesassumeallpossiblevaluesandshowvalidityofresultinallcases-usingtruthtableValidatetheoremsusingtruthtableX+YZ=(X+Y)(X+Z)XYZYZX+YX+ZG(X,Y,Z)0000010100111001011101110100000000000000011111111111111111111111F(X,Y,Z)NotesNOindexofvariable X·X·XX3NOdivision

ifXY=YZX=Z??NOsubtraction

ifX+Y=X+ZY=Z??X=1,Y=0,Z=0XY=XZ=0,XZX=1,Y=0,Z=1Wrong!Wrong!Multi-VariableTheorems“Covering”

(吸收律)

X+X·Y=X X·(X+Y)=X“Combining”

(组合律)

X·Y+X·Y'=X (X+Y)·(X+Y')=X“Consensus”

(一致性定律) X·Y+X'·Z+Y·Z=X·Y+X'·Z (X+Y)·(X'+Z)·(Y+Z)=(X+Y)·(X'+Z)Prove:X·Y+X’·Z+Y·Z=X·Y+X’·ZY·Z=

1·Y·Z

=

(X+X’)·Y·ZX·Y+X’·Z+(X+X’)·Y·Z=X·Y+X’·Z+X·Y·Z+X’·Y·Z=X·Y·(1+Z)+X’·Z·(1+Y)=X·Y+X’·ZProveConsensus(X+Y)+(X+Y)’=1X+X’=1X·Y+X·Y’=X(X’+Y)·(X·(Y’+Z))+(X’+Y)·(X·(Y’+Z))’=(X’+Y)SubstitutionTheorems

(代入定理):

AnytheoremoridentitywithvariableXinswitchingalgebraremainstrueifsubstitutingallXwithanothervariableorlogicexpression.

Rememberallabovetheorems,andwecangetmoreusefulformulasbyanalogyTheorem-XOR

(异或)Commutative:XY=YXAssociative:X(YZ)=(XY)ZDistributive:X·(YZ)=(X·Y)(X·Z)

因果互换关系

XY=ZXZ=YYZ=XXYZW=00XYZ=WTheorem-XOR

(异或)VariableandConstant---

XX=0XX’=1X0=XX1=X’Multi-variable---——theresultdependsonthetotalnumberof“1”X0X1…Xn=

1变量为1的个数是奇数0变量为1的个数是偶数Theorem-XNOR

(同或)Commutative:X⊙Y=Y⊙X

Associative:X⊙(Y⊙Z)=(X⊙Y)⊙ZNODistributive:X(Y⊙Z)≠XY⊙XZ因果互换关系

X⊙Y=ZX⊙Z=YY⊙Z=XTheorem-XNOR

(同或)VariableandConstant---X⊙X=1X⊙X’=0X⊙1=XX⊙0=X’Multi-variable---——theresultdependsonthetotalnumberof“0”X0⊙X1⊙…⊙Xn=

1变量为0的个数是偶数0变量为0的个数是奇数XORvs.XNORAB’=A⊙BAB=A⊙B’AB’=A’BA’⊙B=A⊙B’Evenvariables’XORandXNOR---opposite

XY=(X⊙Y)’XYZW=(X⊙Y⊙Z⊙W)’Oddvariables’XORandXNOR---equal

XYZ=X⊙Y⊙Zn-VariableTheoremsGeneralizedidempotency

(广义同一律)X+X+…+X=XX·X·…·X=XShannon’sexpansiontheorems

(香农展开定理)香农展开定理主要用于证明等式或展开函数将函数展开一次可以使函数内部的变量数从n个减少到n-1个Prove:X·W+X’·Z+Z·W+X·Y’·Z·W=X·W+X’·ZX·W+X’·Z+Z·W+X·Y’·Z·W=X·(

1·W+1’·Z+Z·W+1·Y’·Z·W)+ X’·(0·W+0’·Z+Z·W+0·Y’·Z·W)=X·(W+Z·W+Y’·Z·W)+X’·(Z+Z·W)=X·W·(1+Z+Y’·Z)+X’·Z·(1+W)=X·W+X’·ZApplicationofShannon’sexpansiontheoremsn-VariableTheoremsDeMorgan’sTheorems

(摩根定律)——complementofalogicexpression(X·Y)’=X’+Y’(X+Y)’=X’·Y’反演定理Complementofalogicexpression(反演规则)

:ANDOR,01,complementingallvariablesKeeptheoperationorderoftheoriginalfunction(保持运算优先级)DoNOTchangetheprime(’)overmulti-variables(不属于单个变量上的反号应保留不变)Ex1:PerformthecomplementexpressionsF1=X·(Y+Z)+Z·WF2=(X·Y)’+Z·W·E’F1’=(X’+Y’Z’)(Z’+W’)=X’Z’+X’W’+Y’Z’+Y’Z’W’=X’Z’+X’W’+Y’Z’F2’=(X’+Y’)’(Z’+W’+E)Prove:(XY+X’Z)’XY+X’Z+YZ=XY+X’Z=(X’+Y’)(X+Z’)=X’X+X’Z’+XY’+Y’Z’=X’Z’+XY’

=X’Z’+XY’+Y’Z’Ex2:Prove(X·Y+X’·Z)’=X·Y’+X’·Z’DualityTheorems(对偶定理)

DualofalogicexpressionFD(X1,X2,…,Xn,+,·,’)=F(X1,X2,…,Xn,·,+,’)ANDOR;01Keeptheoperationorderoftheoriginalfunction

PrincipleofDualityIfalogicequationistrue,thenitsdualityremainstrue.

X+X·Y=XX·X+Y=XX+Y=XX·(X+Y)=XWrong!ApplicationofdualityProve:X+YZ=(X+Y)(X+Z)X(Y+Z)XY+XZEx:Performthedualities.F1=X+Y·(Z+W)F2=(X’·(Y+Z’)+(Z+W)’)’F1D=X·(Y+Z·W)F2D=(X’+Y·Z’)·(Z·W)’)’Complementvs.DualityDuality:FD(X1,X2,…,Xn,+,·,’)=F(X1,X2,…,Xn,·,+,’)Complement:[F(X1,X2,…,Xn,+,·)]’ =F(X1’

,X2’,…,Xn’

,·,+)[F(X1,X2,…,Xn)]’=FD(X1’

,X2’,…,Xn’

)SourceofDuality:Positive&NegativeLogicsPositive-logicConventionandNegative-logicConventionaredualities.G1XYFXYFLLLLHLHLLHHHfunctiontableXYF000010100111PositiveLogicXYF111101011000NegativeLogicPositive-logic:F=X·YNegative-logic:F=X+YRepresentationsofLogicFunctionsRepresentationsincommonuse:TruthTableLogicExpressionLogicCircuitTimingdiagram(Waveform)F=F(X,Y,Z)=X·(Y+Z)XYFZ&≥1XYZFLogicexpressionLogiccircuitSwitch:XYZ1-ONLampF:1-ON00000111000001010011100101110111XYZFTruthtable举重裁判电路Reallogiccircuitsfunctionhasanotherveryimportantanalogdimension–time.00000111000001010011100101110111ABCFTruthtableTimediagram(Waveform,波形图)TruthTablesRowWeassigna"RowNumber"foreachentrystartingat0VariablesWeenterallinputcombinationsinascendingorder.FunctionWesaytheoutputisafunctionoftheinputvariablesF(A,B,C)Row ABCF

0 00011 00102 01003 01114 10015 10106 11017 1111FormalDefinitionofTruthTablesn=thenumberofinputvariables2n=thenumberofinputcombinationsTruthTablesLet'salsodefinethefollowingterms---Literal(文字),avariableorthecomplementofavariable ex)A,B,C,A',B',C'ProductTerm(乘积项),asingleliteralorLogicalProductoftwoormoreliterals ex)AA·BB'·CSumorProducts(SOP)(积之和),theLogicalSumofProductTerms ex)A+B A·B+B'·CTruthTablesSumTerm(求和项),asingleliteraloraLogicalSumoftwoormoreliterals ex)A A+B'ProductofSums(POS)(和之积),theLogicalProductofSumTerms ex)(A+B)·(B'+C)ConversionsbetweendifferentrepresentationsLogicexpressionTruthtableLogicexpressionLogiccircuitTruthtable

LogicexpressionLogiccircuit

LogicexpressionLogicexpressionTruthtableF=X+Y’·Z+X’·Y·Z’000001010011100101110111XYZY’·ZX’·Y·Z’F110000000111111000000100“Sum-of-products”“AND-OR”LogicexpressionTruthtableF=(Y’+Z)·(X’+Y+Z’)000001010011100101110111XYZY’+ZX’+Y+Z’F001111111111111111110000“Product-of-sums”“OR-AND”LogicexpressionLogiccircuitF=A+BC+ABC+CABCBCTruthtable

LogicexpressionX’·Y·Z00000010010001111000101111011110XYZFX·Y’·ZX·Y·Z’F=X’·Y·Z+X·Y’·Z+X·Y·Z’“Sum-of-products”“AND-OR”Truthtable

Logicexpression00010011010001111000101111011111XYZFX+Y’+ZX’+Y+ZF=(X+Y’+Z)·(X’+Y+Z)“Product-of-sums”“OR-AND”Logiccircuit

LogicexpressionF=[(A+B)’+(A’+B’)’]’=(A+B)(A’+B’)=AB’+A’B=AB(A’+B’)’(A+B)’ABA’B’StandardRepresentationsofLogicFunctionsWhat’sthestandardrepresentations?NormalTerm(标准项),aterminwhichnovariableappearsmorethanonce ex)"Normal"A·BA+B'

ex)"Non-Normal" A·B·B'A+A'Standardrepresentations

Canonicalsum

(标准和)

Canonicalproduct

(标准积)-Minterm-MaxtermMinterm

(最小项)Minterm——anormalproducttermwithn-literalsthereare2nMintermsforagiventruthtable全体最小项之和为1任意两个最小项的乘积为0输入变量的每一组取值都使一个对应的最小项的值为1注意:XY不是最小项X’·Y’·Z’X’·Y’·ZX’·Y·Z’X’·Y·ZX·Y’·Z’X·Y’·ZX·Y·Z’X·Y·Z000001010011100101110111XYZMintermMaxterm

(最大项)Maxterm——anormalsumtermwithn-literalsthereare2nMaxtermsforagiventruthtable全体最大项之积为0任意两个最大项的和为1输入变量的每一组取值都使一个对应的最大项的值为0X+Y+ZX+Y+Z’X+Y’+ZX+Y’+Z’X’+Y+ZX’+Y+Z’X’+Y’+ZX’+Y’+Z’000001010011100101110111XYZMaxtermX’·Y’·Z’X’·Y’·ZX’·Y·Z’X’·Y·ZX·Y’·Z’X·Y’·ZX·Y·Z’X·Y·ZMintermm0m1m2m3m4m5m6m700000011010201131004101511061117XYZROWX+Y+ZX+Y+Z’X+Y’+ZX+Y’+Z’X’+Y+ZX’+Y+Z’X’+Y’+ZX’+Y’+Z’M0M1M2M3M4M5M6M7MaxtermStandardRepresentationsofLogicFunctionsStandardrepresentations---Canonicalsum

(标准和) ---Asumofthemintermscorrespondingtotruth-tablerowsforwhichthefunctionproducesa1outputCanonicalproduct

(标准积) ---Aproductofthemaxtermscorrespondingtotruth-tablerowsforwhichthefunctionproducesa0outputStandardRepresentationsofLogicFunctionsCanonicalsumofF

F=X'Y’Z’+X’YZ+XY’Z’+XYZ’+XYZ =∑X,Y,Z(0,3,4,6,7)CanonicalproductofF

F=(X+Y+Z’)(X+Y’+Z)(X’+Y+Z’)

=∏X,Y,Z(1,2,5)On-Set(开集)Off-Set(闭集)Row XYZF

0 00011 00102 01003

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论