版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(1)曲线y=f(x)在x=e处的切线与直线l平行,求实数k的值;(2)若至少存在一个x0∈[1,e],使f(x0)<g(x0)成立,求实数a的取值范围;(3)设k∈Z,当x>1时,函数f(x)的图象恒在直线l的上方,求k的最大值.7.解析(1)由已知得f′(x)=lnx+1,且f′(e)=lne+1=2=k-3,解得k=5.(2)因为至少存在一个x0∈[1,e],使f(x0)<g(x0)成立,所以至少存在一个x0∈[1,e],使x0lnx0<eq\f(axeq\o\al(2,0),2)成立,即至少存在一个x0∈[1,e],使a>eq\f(2lnx0,x0)成立.令h(x)=eq\f(2lnx,x),当x∈[1,e]时,h′(x)=eq\f(2(1-lnx),x2)≥0恒成立,因此h(x)=eq\f(2lnx,x)在[1,e]上单调递增.故当x=1时,h(x)min=0,故实数a的取值范围为(0,+∞).(3)由已知得,xlnx>(k-3)x-k+2在(1,+∞)上恒成立,即k<eq\f(xlnx+3x-2,x-1)在(1,+∞)上恒成立,令F(x)=eq\f(xlnx+3x-2,x-1),则F′(x)=eq\f(x-lnx-2,(x-1)2),令m(x)=x-lnx-2,则m′(x)=1-eq\f(1,x)=eq\f(x-1,x)>0在(1,+∞)上恒成立,所以m(x)在(1,+∞)上单调递增,且m(3)=1-ln3<0,m(4)=2-ln4>0,所以在(1,+∞)上存在唯一实数x0(x0∈(3,4))使m(x0)=0,即x0-lnx0-2=0.当1<x<x0时,m(x)<0,即F′(x)<0,当x>x0时,m(x)>0,即F′(x)>0,所以F(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,故F(x)min=F(x0)=eq\f(x0lnx0+3x0-2,x0-1)=eq\f(x0(x0-2)+3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年包装软件搬迁改造项目可行性研究报告
- 2024-2030年全球及中国聚苯醚(PPE)混合物和合金行业需求现状及投资前景预测报告
- 2024-2030年全球及中国硫化氢检测器行业供需现状及发展前景预测报告
- 2024-2030年全球及中国珊瑚礁水族箱行业销售渠道及营销前景预测报告
- 2024-2030年全球及中国标准滚子链行业现状动态及需求规模预测报告
- 2024-2030年全球及中国批发分销ERP软件行业现状动态及应用前景预测报告
- 2024-2030年全球及中国容器编排系统行业发展趋势及前景规划分析报告
- 2024-2030年全球及中国含麸质谷物行业销售策略及营销动态分析报告
- 2024-2030年全球及中国加热芯行业产销动态及发展前景预测报告
- 2024-2030年全球与中国轮胎弦和轮胎面料行业运营效益及未来盈利预测报告
- 脚手架搭设与使用风险分析及管控措施
- 彩色简约鱼骨图PPT图表模板
- 经纤维支气管镜气管插管
- 初中英语常考改错练习题(共十八类100题附参考答案-解析)
- 炉膛热力计算
- 深圳高铁总部项目遴选方案
- AQ-C1-19 安全教育记录表(三级)
- 营销中心物业服务标准讲解
- 五年级阅读指导课(课堂PPT)
- 广东饲料项目建议书(参考范文)
- 液碱浓度、密度对照表
评论
0/150
提交评论