版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年长沙商贸旅游职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.化简的结果是()
A.a2
B.a
C.a
D.a答案:C2.化简的结果是()
A.aB.C.a2D.答案:B解析:分析:指数函数的性质3.方程ax2+2x+1=0至少有一个负的实根的充要条件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0答案:C4.定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是()
A.
B.
C.
D.答案:D5.已知:集合A={x,y},B={2,2y},若A=B,则x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故为:2或66.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是()
A.内切
B.相交
C.外切
D.外离答案:B7.如图,四条直线互相平行,且相邻两条平行线的距离均为h,一直正方形的4个顶点分别在四条直线上,则正方形的面积为()
A.4h2
B.5h2
C.4h2
D.5h2
答案:B8.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()
A.
B.2
C.4
D.12答案:B9.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.10.8的值为()
A.2
B.4
C.6
D.8答案:B11.已知e1,e2是夹角为60°的单位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a•b;
(2)求a与b的夹角<a,b>.答案:(1)求a•b=(2e1+e2)•
(-3e1+2e2)=
-6e12+e1
•e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1•e2+e22=7同样地求得|b|=7.所以cos<a,b>=a•b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.12.直线y=kx+1与椭圆x29+y24=1的位置关系是()A.相交B.相切C.相离D.不确定答案:∵直线y=kx+1过定点(0,1),把(0,1)代入椭圆方程的左端有0+14<1,即(0,1)在椭圆内部,∴直线y=kx+1与椭圆x29+y24=1必相交,
因此可排除B、C、D;
故选A.13.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.14.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).
(1)画出散点图;
(2)求y关于x的线性回归方程;
(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.15.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()
A.-2
B.2
C.-8
D.8答案:C16.若a>0,b<0,直线y=ax+b的图象可能是()
A.
B.
C.
D.
答案:C17.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.18.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.19.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.20.某厂2011年的产值为a万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为______万元.答案:2011年产值为a,增长率为7%,2012年产值为a+a×7%=a(1+7%),2013年产值为a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的产值为a(1+7%)11.故为:a(1+7%)11.21.已知a>0,且a≠1,解关于x的不等式:
答案:①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<0解析:原不等式等价于原不等式同解于7分由①②得1<ax<4,由③得从而1<ax≤210分①当a>1时,原不等式解为{x|0<x≤loga2②当0<a<1时,原不等式解为{x|loga2≤x<022.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A23.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B24.设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是()
A.13
B.13.5
C.14
D.14.5答案:A25.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.26.已知|a=2,|b|=1,a与b的夹角为60°,求向量.a+2b与2a+b的夹角.答案:由题意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,设a+2b与2a+b夹角为θ,则cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,则θ=arccos571427.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1328.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(
)
A.
B.
C.3
D.2答案:C29.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.30.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.31.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C32.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,则x的值为()
A.8
B.4
C.2
D.0答案:B33.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为
______.答案:a在e方向上的投影为a?e=|a||e|cosπ3=4故为:434.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.35.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。36.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.37.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A38.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.
(I)求圆C的参数方程;
(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)
…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)39.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°40.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B41.随机变量ξ的分布列为
ξ01xP15p310且Eξ=1.1,则p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故为12;2.42.在对吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若随机变量K2的观测值k>6.635,我们有99%的把握说明吸烟与患肺病有关,则若某人吸烟,那么他有99%的可能患有肺病
B.若由随机变量求出有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99个人患有肺病
C.若由随机变量求出有95%的把握说吸烟与患肺病有关,那么有5%的可能性使得推断错误
D.以上说法均不正确答案:D43.在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=.k001.,N=.0110.,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,
(1)求k的值.
(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.答案:(1)由题设得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或-2.(2)令MN=A,设B=abcd是A的逆矩阵,则AB=0k10abcd=1001⇒ckdkab=1001⇒ck=1dk=0a=0b=1①当k≠0时,上式⇒a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩阵是B=011k0.(10分)②当k≠0时,上式不可能成立,MN不可逆,(11分).44.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.45.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.46.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故选A.47.已知一个四棱锥的三视图如图所示,则该四棱锥的体积是______.答案:因为三视图复原的几何体是正四棱锥,底面边长为2,高为1,所以四棱锥的体积为13×2×2×1=43.故为:43.48.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10549.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.50.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).第2卷一.综合题(共50题)1.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()
A.15
B.10
C.7.5
D.5答案:D2.已知直线l:kx-y+1+2k=0.
(1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).3.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.4.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A5.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根
(1)证明四点共圆
(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。6.直角△PIB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则(
)
A.tanα=α
B.tan=2α
C.sinα=2cosα
D.2sin=cosα答案:B7.平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成12(n2+n+2)块.答案:证明:(1)当n=1时,1条直线把平面分成2块,又12(12+1+2)=2,命题成立.(2)假设n=k时,k≥1命题成立,即k条满足题设的直线把平面分成12(k2+k+2)块,那么当n=k+1时,第k+1条直线被k条直线分成k+1段,每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.所以k+1条直线把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]块,这说明当n=k+1时,命题也成立.由(1)(2)知,对一切n∈N*,命题都成立.8.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.9.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13510.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.11.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()
A.1
B.2
C.
D.
答案:A12.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011答案:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.13.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意的连续取出2件,写出其中次品数ξ的概率分布.答案:依题意,随机变量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品数ξ的概率分布是:14.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C15.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.16.x=5
y=6
x+y=11
END
上面程序运行时输出的结果是()
A.x+y=11
B.11
C.x+y
D.出错信息答案:B17.下列语句是命题的是______.
①求证3是无理数;
②x2+4x+4≥0;
③你是高一的学生吗?
④一个正数不是素数就是合数;
⑤若x∈R,则x2+4x+7>0.答案:①是祈使句,所以①不是命题.②是命题,能够判断真假,因为x2+4x+4=(x+2)2≥0,所以②是命题.③是疑问句,所以③不是命题.④能够判断真假,所以④是命题.⑤能够判断真假,因为x2+4x+7=(x+2)2+3>0,所以⑤是命题.故为:②④⑤.18.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.19.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)20.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.21.已知正方形ABCD的边长为1,=,=,=,则的模等于(
)
A.0
B.2+
C.
D.2答案:D22.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.23.已知函数f(x)=
-x+1,x<0x-1,x≥0,则不等式x+(x+1)f(x+1)≤1的解集是()
A.[-1,
2-1]B.(-∞,1]C.(-∞,
2-1]D.[-
2-1,
2-1]答案:C解析:由题意x+(x+1)f(x+1)=24.设随机变量X~B(10,0.8),则D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C25.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()
A.
B.
C.
D.答案:D26.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B27.设O是平行四边形ABCD的两条对角线AC与BD的交点,对于下列向量组:①AD与AB;②DA与BC;③CA与DC;④OD与OB.其中能作为一组基底的是______(只填写序号).答案:解析:由于①AD与AB不共线,③CA与DC不共线,所以都可以作为基底.②DA与BC共线,④OD与OB共线,不能作为基底.故为:①③.28.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B29.已知圆锥的母线长为5,底面周长为6π,则圆锥的体积是______.答案:圆锥的底面周长为6π,所以圆锥的底面半径为3;圆锥的高为4所以圆锥的体积为13×π32×4=12π故为12π.30.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是______元.答案:设每台彩电的原价是x元,则有:(1+40%)x×0.8-x=270,解得:x=2250,故为:2250.31.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).32.如图是集合的知识结构图,如果要加入“全集”,则应该放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位答案:D33.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:234.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ35.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是
______.答案:∵“a,b都是奇数”的否命题是“a,b不都是奇数”,“a+b是偶数”的否命题是“a+b不是偶数”,∴命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故为:若a+b不是偶数,则a,b不都是奇数.36.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)37.顶点在原点,焦点是(0,5)的抛物线方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A38.设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴当a=0时,b∈Q,P+Q={1,2,6}当a=2时,b∈Q,P+Q={3,4,8}当a=5时,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故选C39.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C40.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.41.(选做题)那霉素发酵液生物测定,一般都规定培养温度为(37±1)°C,培养时间在16小时以上,某制药厂为了缩短时间,决定优选培养温度,试验范围固定在29~50°C,精确度要求±1°C,用分数法安排实验,令第一试点在t1处,第二试点在t2处,则t1+t2=(
).答案:7942.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)
建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.43.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:244.
如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A45.若直线的参数方程为(t为参数),则该直线的斜率为()
A.
B.2
C.1
D.-1答案:D46.设全集U={1,2,3,4,5},A∩C∪B={1,2},则集合C∪A∩B的所有子集个数最多为()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴当集合C∪A∩B的所有子集个数最多时,集合B中最多有三个元素:3,4,5,且A∩B=?,作出文氏图∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集个数为:23=8.故选D.47.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.48.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2011的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列∴OP2011的坐标为(2,4020)故为:(2,4020)49.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(
)
A.6
B.2
C.-2
D.或-2答案:D50.下列随机变量ξ服从二项分布的是()
①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;
②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;
③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n次抽取中出现次品的件数(M<N);
④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n次抽取中出现次品的件数(M<N).
A.②③
B.①④
C.③④
D.①③答案:D第3卷一.综合题(共50题)1.摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.答案:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)
答:此次摇奖获得奖金数额的数字期望是395元.2.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A3.已知向量=(1,1,-2),=(2,1,),若≥0,则实数x的取值范围为()
A.(0,)
B.(0,]
C.(-∞,0)∪[,+∞)
D.(-∞,0]∪[,+∞)答案:C4.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C5.已知直线l:kx-y+1+2k=0.
(1)证明:直线l过定点;
(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.答案:(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)令y=0得A点坐标为(-2-1k,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.当且仅当4k=1k,即k=12时取等号.即△AOB的面积的最小值为4,此时直线l的方程为12x-y+1+1=0.即x-2y+4=06.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且,则下列命题中正确命题的个数为(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C7.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设______.答案:根据用反证法证明数学命题的方法和步骤,先把要证的结论进行否定,得到要证的结论的反面,而命题:“三角形三个内角至少有一个不大于60°”的否定为“三个内角都大于60°”,故为三个内角都大于60°.8.O为△ABC平面上一定点,该平面上一动点p满足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)
,λ>0},则△ABC的()一定属于集合M.A.重心B.垂心C.外心D.内心答案:如图:D是BC的中点,在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,设t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中点,∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常数,则AP∥AD,∴点P得轨迹是直线AD,△ABC的重心一定属于集合M,故选A.9.已知椭圆C:+y2=1的右焦点为F,右准线l,点A∈l,线段AF交C于点B.若=3,则=(
)
A.
B.2
C.
D.3答案:A10.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()
A.
B.
C.
D.4
答案:B11.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()
A.
B.
C.或
D.或答案:C12.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.
(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)13.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2214.试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.答案:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.15.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:2416.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是______元.答案:设每台彩电的原价是x元,则有:(1+40%)x×0.8-x=270,解得:x=2250,故为:2250.17.已知适合不等式|x2-4x+p|+|x-3|≤5的x的最大值为3,求p的值.答案:因为x的最大值为3,故x-3<0,原不等式等价于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,则x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值为3,(6分)设x2-5x+p-2=0
的根分别为x1和x2,x1<x2,x2-3x+p+2=0的根分别为x3和
x4,x3<x4.则x2=3,或x4=3.若x2=3,则9-15+p-2=0,p=8,若x4=3,则9-9+p+2=0,p=-2.当p=-2时,原不等式无解,检验得:p=8
符合题意,故p=8.(12分)18.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C19.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C20.某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为()A.24B.22C.20D.12答案:先排体育课,有2种排法,再排语、数、外三门课,有A33种排法,按乘法原理,不同排法的种数为2×A33=12.故选D.21.已知直线l1:y=kx+(k<0=被圆x2+y2=4截得的弦长为,则l1与直线l2:y=(2+)x的夹角的大小是()
A.30°
B.45°
C.60°
D.75°答案:B22.在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间()
A.有95%的把握认为两者有关
B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关
D.约有99%的打鼾者患心脏病答案:C23.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.24.若有以下说法:
①相等向量的模相等;
②若a和b都是单位向量,则a=b;
③对于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,则a∥c.
其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A25.给出的下列几个命题:
①向量共面,则它们所在的直线共面;
②零向量的方向是任意的;
③若则存在唯一的实数λ,使
其中真命题的个数为()
A.0
B.1
C.2
D.3答案:B26.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D27.试求288和123的最大公约数是
答案:3解析:,,,.∴和的最大公约数28.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C29.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.30.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3231.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B32.给出下列结论:
(1)两个变量之间的关系一定是确定的关系;
(2)相关关系就是函数关系;
(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;
(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
以上结论中,正确的有几个?()
A.1
B.2
C.3
D.4答案:A33.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为
______,半径长是
______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.34.长为3的线段AB的端点A、B分别在x轴、y轴上移动,,则点C的轨迹是()
A.线段
B.圆
C.椭圆
D.双曲线答案:C35.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:436.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C37.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D38.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年红外遮蔽诱饵及伪装陶瓷粉料项目融资计划书
- 兽医寄生虫病学试题库(含参考答案)
- 养老院老人心理辅导支持制度
- 养老院老人紧急救援人员行为规范制度
- 《肠内营养护理》课件
- 房屋架木安全协议书范文(2篇)
- 2025年南宁货运从业资格证的考题
- 2025年杭州货运从业资格证考试题库答案大全
- 2024年物联网智能家居系统研发与销售合同
- 2025年哈密货运从业资格证考题
- 2014年吉林省长春市中考模拟数学
- 上汽-最详细的整车开发流程(CPMP)
- 论文岩棉用酚醛树脂体系
- 设计开发记录总表
- 通风填写范例
- 盲人无障碍出行调查问卷分析报告(20220215150515)
- 财务审批权限管理办法
- 许昌特产介绍
- 欧姆龙AD081、DA08C输入输出模块的使用手册
- 外墙真石漆施工合同书
- 一千个伤心的理由(张学友)原版五线谱钢琴谱正谱乐谱.docx
评论
0/150
提交评论