2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析_第1页
2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析_第2页
2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析_第3页
2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析_第4页
2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年湖南税务高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2

因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].2.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:223.设a=(x,y,3),b=(3,3,5),且a⊥b,则x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a•b=3x+3y+15=0,∴x+y=-5,故选

C.4.直线y=kx+1与圆x2+y2=4的位置关系是()

A.相交

B.相切

C.相离

D.与k的取值有关答案:A5.在极坐标系中,点A的极坐标为(2,0),直线l的极坐标方程为ρ(cosθ+sinθ)+2=0,则点A到直线l的距离为______.答案:由题意得点A(2,0),直线l为

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴点A到直线l的距离为

|2+0+2|2=22,故为22.6.已知向量=(x,1),=(3,6),且⊥,则实数x的值为()

A.

B.-2

C.2

D.-答案:B7.设

是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()

A.k+m=0

B.k=m

C.km+1=0

D.km-1=0答案:D8.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故为C911(38)10(58)29.如图给出的是计算1+13+15+…+12013的值的一个程序框图,图中空白执行框内应填入i=______.答案:∵该程序的功能是计算1+13+15+…+12013的值,最后一次进入循环的终值为2013,即小于等于2013的数满足循环条件,大于2013的数不满足循环条件,由循环变量的初值为1,步长为2,故执行框中应该填的语句是:i=i+2.故为:i+2.10.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()

A.12

B.13

C.24

D.28答案:C11.如图,设P,Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为______.答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB

所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45故为:4512.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.13.下列命题中,正确的是()

A.若a∥b,则a与b的方向相同或相反

B.若a∥b,b∥c,则a∥c

C.若两个单位向量互相平行,则这两个单位向量相等

D.若a=b,b=c,则a=c答案:D14.已知向量=(1,2),=(2,x),且=-1,则x的值等于()

A.

B.

C.

D.答案:D15.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.16.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.17.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:1218.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为

______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7619.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种20.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(

A.6

B.2

C.-2

D.或-2答案:D21.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.22.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()

A.

B.-

C.2

D.-2答案:B23.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.24.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.25.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()

A.是锐角三角形

B.是直角三角形

C.是钝角三角形

D.不存在答案:B26.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.

(1)若A,B的中点为P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).27.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.28.算法框图中表示判断的是()A.

B.

C.

D.

答案:∵在算法框图中,表示判断的是菱形,故选B.29.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D30.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()

A.

B.

C.

D.

答案:A31.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.32.Rt△ABC中,CD是斜边AB上的高,该图中只有x个三角形与△ABC相似,则x的值为()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三对相似三角形,该图中只有2个三角形与△ABC相似.故选B.33.设O是正△ABC的中心,则向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共线向量

D.共起点的向量答案:B34.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.35.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.

(I)求圆C的参数方程;

(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)

…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)36.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:37.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2038.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()

A.圆

B.椭圆

C.双曲线的一支

D.抛物线答案:A39.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°40.方程cos2x=x的实根的个数为

______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填

1.41.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()

A.等边三角形

B.等腰三角形

C.不等边三角形

D.直角三角形答案:B42.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.43.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.44.方程4x-3×2x+2=0的根的个数是(

A.0

B.1

C.2

D.3答案:C45.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(

A.

B.

C.

D.答案:B46.(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为x=ty=t(t为参数)和x=2cosθy=2sinθ(θ为参数),则曲线C1与C2的交点坐标为______.答案:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组y2=xx2

+y2=2

可得x=1y=1,故曲线C1与C2的交点坐标为(1,1),故为(1,1).47.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为()A.2B.3C.4D.无数个答案:由题意,两腰为2,底角为30°;两腰为2,顶角为30°;底边为2,底角为30°;底边为2,顶角为30°.∴共4个元素,故选C.48.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.

①上海地区面积的70%至80%将降雨;

②上海地区下雨的时间在16.8小时至19.2%小时之间;

③上海地区在相似的气候条件下有70%至80%的日子是下雨的;

④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③49.求原点至3x+4y+1=0的距离?答案:由原点坐标为(0,0),得到原点到已知直线的距离d=|3?0+4?0+1|32+42=15.50.以下命题:

①两个共线向量是指在同一直线上的两个向量;

②共线的两个向量互相平行;

③共面的三个向量是指在同一平面内的三个向量;

④共面的三个向量是指平行于同一平面的三个向量.

其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.第2卷一.综合题(共50题)1.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()

A.4

B.

C.

D.答案:D2.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-123.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:34.给出的下列几个命题:

①向量共面,则它们所在的直线共面;

②零向量的方向是任意的;

③若则存在唯一的实数λ,使

其中真命题的个数为()

A.0

B.1

C.2

D.3答案:B5.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提都错导致结论错答案:A6.图为一个几何体的三视国科,尺寸如图所示,则该几何体的体积为()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由图中数据,下部的正三棱柱的高是3,底面是一个正三角形,其边长为2,高为3,故其体积为3×12×2×3=33上部的球体直径为1,故其半径为12,其体积为4π3×(12)3=π6故组合体的体积是33+π6故选C7.若曲线C的极坐标方程为

ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y8.关于x的方程x2+4x+k=0有一个根为-2+3i(i为虚数单位),则实数k=______.答案:由韦达定理(一元二次方程根与系数关系)可得:x1•x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,则k=(-2-3i)(-2+3i)=13故为:139.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B10.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()

A.++

B.++

C.--+

D.+-

答案:C11.如图,O为直线A0A2013外一点,若A0,A1,A2,A3,A4,A5,…,A2013中任意相邻两点的距离相等,设OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其结果为______.答案:设A0A2013的中点为A,则A也是A1A2012,…A1006A1007的中点,由向量的中点公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故为:1007(a+b)12.过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F1构成的△ABF2的周长为()

A.2

B.2

C.4

D.8答案:C13.在平面直角坐标系中,点A(4,-2)按向量a=(-1,3)平移,得点A′的坐标是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:设A′的坐标为(x′,y′),则x′=4-1=3y′=-2+3=1,∴A′(3,1).故选B.14.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.15.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.16.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.17.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,518.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.19.求过点A(2,3)且被两直线3x+4y-7=0,3x+4y+8=0截得线段为32的直线方程.答案:设所求直线l的斜率为k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2条直线的夹角为45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直线的方程为y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.20.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.21.半径为R的球内接一个正方体,则该正方体的体积为()A.22RB.4π3R3C.893R3D.193R3答案:∵半径为R的球内接一个正方体,设正方体棱长为a,正方体的对角线过球心,可得正方体对角线长为:a2+a2+a2=2R,可得a=2R3,∴正方体的体积为a3=(2R3)3=83R39,故选C;22.已知点P(x,y)在曲线x=2+cosθy=2sinθ(θ为参数),则ω=3x+2y的最大值为______.答案:由题意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴当sin(θ+?)=1时,ω=3x+2y的最大值为

11故为11.23.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A24.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B25.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.26.点M的直角坐标是(,-1),在ρ≥0,0≤θ<2π的条件下,它的极坐标是()

A.(2,)

B.(2,)

C.(,)

D.(,)答案:A27.若直线y=x+b与圆x2+y2=2相切,则b的值为

______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.28.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.29.直线3x+5y-1=0与4x+3y-5=0的交点是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C30.直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是()

A.(5,5)

B.(5,-5)

C.(-1,1)

D.(1,1)答案:A31.化简的结果是()

A.a2

B.a

C.a

D.a答案:C32.凡自然数都是整数,而

4是自然数

所以4是整数.以上三段论推理()

A.正确

B.推理形式不正确

C.两个“自然数”概念不一致

D.两个“整数”概念不一致答案:A33.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.16B.112C.536D.19答案:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,∴根据古典概型的概率公式得到P=336=112,故选B.34.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.35.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有

A.a<0

B.a>0

C.a<-1

D.a>1答案:A36.若圆x2+y2=9上每个点的横坐标不变,纵坐标缩短为原来的,则所得到的曲线的方程是()

A.

B.

C.

D.答案:C37.若直线l经过点A(-1,1),且一个法向量为n=(3,3),则直线方程是______.答案:设直线的方向向量m=(1,k)∵直线l一个法向量为n=(3,3)∴m•n=0∴k=-1∵直线l经过点A(-1,1)∴直线l的方程为y-1=(-1)×(x+1)即x+y=0故为x+y=038.四支足球队争夺冠、亚军,不同的结果有()

A.8种

B.10种

C.12种

D.16种答案:C39.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.40.将图形F按=(,)(其中)平移,就是将图形F()A.向x轴正方向平移个单位,同时向y轴正方向平移个单位.B.向x轴负方向平移个单位,同时向y轴正方向平移个单位.C.向x轴负方向平移个单位,同时向y轴负方向平移个单位.D.向x轴正方向平移个单位,同时向y轴负方向平移个单位.答案:A解析:根据图形容易得出结论.41.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()

A.

B.

C.

D.答案:D42.如图程序输出的结果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B43.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.44.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.45.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为446.若直线l经过原点和点A(-2,-2),则它的斜率为()

A.-1

B.1

C.1或-1

D.0答案:B47.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()

A.B与C互斥

B.A与C互斥

C.任意两个事件均互斥

D.任意两个事件均不互斥答案:B48.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为()

A.

B.

C.

D.答案:D49.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:850.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.第3卷一.综合题(共50题)1.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.

问:(1)这种猜想,你认为正确吗?

(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?

(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立2.在极坐标系中,直线l经过圆ρ=cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=cosθ可知此圆的圆心为(12,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=12,所以直线l与极轴的交点的极坐标为(12,0).故为:(12,0).3.下列命题中,正确的是()

A.若a∥b,则a与b的方向相同或相反

B.若a∥b,b∥c,则a∥c

C.若两个单位向量互相平行,则这两个单位向量相等

D.若a=b,b=c,则a=c答案:D4.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2

π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2

π6)到直线ρsinθ=2的距离1,故为:1.5.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()

A.-2

B.-

C.

D.3答案:B6.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.7.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;

(1)求双曲线的标准方程;

(2)求弦AB所在直线方程;

(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.8.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE可表示为(用a,b、c表示).

()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故选A.9.参数方程x=cosαy=1+sinα(α为参数)化成普通方程为

______.答案:∵x=cosαy=1+sinα(α为参数)∴x2+(y-1)2=cos2α+sin2α=1.即:参数方程x=cosαy=1+sinα(α为参数)化成普通方程为:x2+(y-1)2=1.故为:x2+(y-1)2=1.10.已知:集合A={x,y},B={2,2y},若A=B,则x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故为:2或611.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______

(1)有95%的把握认为“这种血清能起到预防感冒的作用”

(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒

(3)这种血清预防感冒的有效率为95%

(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).12.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ=______;.答案:∵由题意知该病的发病率为0.02,且每次实验结果都是相互独立的,∴ξ~B(10,0.02),∴由二项分布的方差公式得到Dξ=10×0.02×0.98=0.196.故为:0.19613.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.14.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.

(Ⅰ)求证:AC是△BDE的外接圆的切线;

(Ⅱ)若AD=23,AE=6,求EC的长.答案:证明:(Ⅰ)取BD的中点O,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.

…(5分)(Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)15.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于16.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则P(X=4)=______.(用数字表示)答案:由题意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故为:14042917.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.18.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.19.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310

(2X)3=960x3,故为960x3.20.点(2,0,3)在空间直角坐标系中的位置是在()

A.y轴上

B.xOy平面上

C.xOz平面上

D.第一卦限内答案:C21.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.22.已知随机变量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,则a的值为()

A.5

B.6

C.7

D.8答案:C23.某次考试,满分100分,按规定x≥80者为良好,60≤x<80者为及格,小于60者不及格,画出当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的程序框图.答案:第一步:输入一个成绩X(0≤X≤100)第二步:判断X是否大于等于80,若是,则输出良好;否则,判断X是否大于等于60,若是,则输出及格;否则,输出不及格;第三步:算法结束24.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.25.已知点P1(3,-5),P2(-1,-2),在直线P1P2上有一点P,且|P1P|=15,则P点坐标为()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C26.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}27.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.28.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c229.系数矩阵为.2132.,解为xy=12的一个线性方程组是______.答案:可设线性方程组为2132xy=mn,由于方程组的解是xy=12,∴mn=47,∴所求方程组为2x+y=43x+2y=7,故为:2x+y=43x+2y=7.30.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A31.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.32.点M(4,)化成直角坐标为()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B33.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D34.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.35.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G

是何种曲线之间的关系是:______

圆M与的位置相离相切相交G

是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率

0<e<1,此时r<d,圆M与准线相离;抛物线的离心率

e=1,此时r=d,圆M与准线相切;双曲线的离心率

e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.36.如图,在平行四边形OABC中,点C(1,3).

(1)求OC所在直线的斜率;

(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.37.若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真D.不能判断q的真假答案:因为“?p”为假,所以p为真;又因为“p∧q”为假,所以q为假.对于A,p或q为真,对于C,D,显然错,故选B.38.已知函数f(x)=(12)x

x≥4

f(x+1)

x<4

则f(2+log23)的值为______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故为12439.下面的结论正确的是()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论