版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年商丘职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()
A.(1)的假设错误,(2)的假设正确
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)与(2)的假设都错误答案:A2.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=13.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为(
)
A.10组
B.9组
C.8组
D.7组答案:B4.如图,O为直线A0A2013外一点,若A0,A1,A2,A3,A4,A5,…,A2013中任意相邻两点的距离相等,设OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其结果为______.答案:设A0A2013的中点为A,则A也是A1A2012,…A1006A1007的中点,由向量的中点公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故为:1007(a+b)5.已知M和N分别是四面体OABC的边OA,BC的中点,且,若=a,=b,=c,则用a,b,c表示为()
A.
B.
C.
D.
答案:B6.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.7.一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.8.用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.答案:(Ⅰ)由题意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3则甲获胜的概率为P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)9.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C10.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q的轨迹方程.答案:(I)∵椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴椭圆的离心率e=ca=12=22…4分(II)由(I)知,椭圆C的方程为x22+y2=1,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-355)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①将y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化简得x2=1810k2-3…③因为点Q在直线y=kx+2上,所以k=y-2x,代入③中并化简得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,则y∈(12,2-355)所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分11.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.12.已知均为单位向量,且=,则,的夹角为()
A.
B.
C.
D.答案:C13.
如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2
,则λ等()
A.
B.1
C.
D.2
答案:D14.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:
(1)共有多少种不同的结果?并试着列举出来.
(2)两粒骰子点数之和等于3的倍数的概率;
(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.
…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.
…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.
…(12分)15.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.16.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故为:317.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:118.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.19.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()
A.10
B.-10
C.14
D.-14答案:D20.直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),则经过A(a1,b1),B(a2,b2)两点的直线方程为______.答案:∵直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)两点都在直线2x+3y+1=0上,由于两点确定一条直线,因此经过A(a1,b1),B(a2,b2)两点的直线方程即为2x+3y+1=0.故为:2x+3y+1=0.21.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()
A.12
B.13
C.24
D.28答案:C22.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-323.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).24.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.③②①C.①③②D.③①②答案:∵随机数表法进行抽样,包含这样的步骤,①将总体中的个体编号;②选定开始的数字,按照一定的方向读数;③获取样本号码,∴把题目条件中所给的三项排序为:①③②,故选C.25.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a•b=30,则a1+a2b1+b2=______.答案:因为丨a丨=5,丨b丨=6,a•b=30,又a⋅b=|a|⋅|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共线.设b=ka,(k>0).则b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故为:56.26.已知A,B两点的极坐标为(6,)和(8,),则线段AB中点的直角坐标为()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D27.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.28.与直线2x+y+1=0的距离为的直线的方程是()
A.2x+y=0
B.2x+y-2=0
C.2x+y=0或2x+y-2=0
D.2x+y=0或2x+y+2=0答案:D29.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C30.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形31.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.32.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.33.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为1334.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任两个均互斥
D.任两个均不互斥答案:B35.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C36.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.37.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.38.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,
(1)与向量FE共线的有
______.
(2)与向量DF的模相等的有
______.
(3)与向量ED相等的有
______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.39.设全集U={1,2,3,4,5},A∩C∪B={1,2},则集合C∪A∩B的所有子集个数最多为()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴当集合C∪A∩B的所有子集个数最多时,集合B中最多有三个元素:3,4,5,且A∩B=?,作出文氏图∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集个数为:23=8.故选D.40.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是______元.答案:设每台彩电原价是x元,由题意可得(1+40%)x•0.8-x=144,解得x=1200,故为1200.41.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.42.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.43.柱坐标(2,,5)对应的点的直角坐标是
。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()44.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.45.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.46.指数函数y=ax的图象经过点(2,16)则a的值是()A.14B.12C.2D.4答案:设指数函数为y=ax(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选D.47.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()
A.15
B.10
C.7.5
D.5答案:D48.函数f(x)=2,0<x<104,10≤x<155,15≤x<20,则函数的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函数的值域是{2,4,5}故选B49.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.50.在同一坐标系中,y=ax与y=a+x表示正确的是()A.
B.
C.
D.
答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.第2卷一.综合题(共50题)1.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(
)
A.抽签法
B.简单随机抽样
C.分层抽样
D.系统抽样答案:D2.已知曲线,
θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形答案:C3.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:
序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;
(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)4.设非零向量、、满足||=||=||,+=,则<,>=()
A.150°
B.120°
C.60°
D.30°答案:B5.如图是一个实物图形,则它的左视图大致为()A.
B.
C.
D.
答案:∵左视图是指由物体左边向右做正投影得到的视图,并且在左视图中看到的线用实线,看不到的线用虚线,∴该几何体的左视图应当是包含一条从左上到右下的对角线的矩形,并且对角线在左视图中为实线,故选D.6.已知数列{an}的前n项和Sn=an2+bn=c
(a、b、c∈R),则“c=0”是“{an}是等差数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件答案:数列{an}的前n项和Sn=an2+bn+c根据等差数列的前n项和的公式,可以看出当c=0时,Sn=an2+bn表示等差数列的前n项和,则数列是一个等差数列,当数列是一个等差数列时,表示前n项和时,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要条件,故选C.7.在平行四边形ABCD中,AC与DB交于点O,E是线段OD的中点,AE延长线与CD交于F.若AC=a,BD=b,则AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由题意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于点G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故选B.8.已知直线y=kx+1与椭圆x25+y2m=1恒有公共点,则实数m的取值范围为()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直线y=kx+1恒过点M(0,1)要使直线y=kx+1与椭圆x25+y2m=1恒有公共点,则只要M(0,1)在椭圆的内部或在椭圆上从而有m>0m≠505+1m≤1,解可得m≥1且m≠5故选D.9.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.
现已知当n=7时该命题不成立,那么可推得()
A.当n=6时该命题不成立
B.当n=6时该命题成立
C.当n=8时该命题不成立
D.当n=8时该命题成立答案:A10.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(
)
A.0个
B.1个
C.2个
D.无穷多个答案:C11.方程x2+y2=1(xy<0)的曲线形状是()
A.
B.
C.
D.
答案:C12.否定结论“至少有一个解”的说法中,正确的是()
A.至多有一个解
B.至少有两个解
C.恰有一个解
D.没有解答案:D13.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A14.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故为C911(38)10(58)215.已知一直线的斜率为3,则这条直线的倾斜角是()A.30°B.45°C.60°D.90°答案:设直线的倾斜角为α,由直线的斜率为3,得到:tanα=3,又α∈(0,180°),所以α=60°.故选C16.有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:分析易知当以PP′为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小.设此时的正方形边长为x则:(PP′)2=2x2,又因为PP′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故选A17.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()
A.0
B.1
C.μ
D.μ答案:C18.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A19.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.20.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:121.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()
A.
B.
C.2
D.答案:B22.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D23.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.24.如果e1,e2是平面a内所有向量的一组基底,那么()A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间任一向量可以表示为a=λ1e1+λ2e2,这里λ1,λ2∈RC.对实数λ1,λ2,λ1e1+λ2e2不一定在平面a内D.对平面a中的任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案:∵由基底的定义可知,e1和e2是平面上不共线的两个向量,∴实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0,不是空间任一向量都可以表示为a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示为a=λ1e1+λ2e2的形式,此时实数λ1,λ2有且只有一对,而对实数λ1,λ2,λ1e1+λ2e2一定在平面a内,故选A.25.10件产品中有7件正品,3件次品,则在第一次抽到次品条件下,第二次抽到次品的概率______.答案:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为29;故为29.26.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].27.已知A(1,0).B(7,8),若点A和点B到直线l的距离都为5,且满足上述条件的直线l共有n条,则n的值是()A.1B.2C.3D.4答案:与直线AB平行且到直线l的距离都为5的直线共有两条,分别位于直线AB的两侧,由线段AB的长度等于10,还有一条直线是线段AB的中垂线,故满足上述条件的直线l共有3条,故选C.28.某航空公司经营A,B,C,D这四个城市之间的客运业务,它们之间的直线距离的部分机票价格如下:AB为2000元;AC为1600元;AD为2500元;CD为900元;BC为1200元,若这家公司规定的机票价格与往返城市间的直线距离成正比,则BD间直线距离的票价为(设这四个城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A29.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(
)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.30.在平面直角坐标系下,曲线C1:x=2t+2ay=-t(t为参数),曲线C2:x2+(y-2)2=4.若曲线C1、C2有公共点,则实数a的取值范围
______.答案:∵曲线C1:x=2t+2ay=-t(t为参数),∴x+2y-2a=0,∵曲线C2:x2+(y-2)2=4,圆心为(0,2),∵曲线C1、C2有公共点,∴圆心到直线x+2y-2a=0距离小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故为2-5≤a≤2+5.31.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).32.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.33.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;
(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)
设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.34.(2的c的•湛江一模)已知⊙O的方程为x2+y2=c,则⊙O上的点到直线x=2+45ty=c-35t(t为参数)的距离的最大值为______.答案:∵直线x=2+45t一=1-35t(t为参数)∴3x+4一=10,∵⊙e的方程为x2+一2=1,圆心为(0,0),设直线3x+4一=k与圆相切,∴|k|5=1,∴k=±5,∴直线3x+4一=k与3x+4一=10,之间的距离就是⊙e上的点到直线的距离的最大值,∴d=|10±5|5,∴d的最大值是155=3,故为:3.35.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C36.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C37.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()
A.0
B.
C.
D.答案:B38.已知向量a表示“向东航行1km”,向量b表示“向北航行3km”,则向量a+b表示()A.向东北方向航行2kmB.向北偏东30°方向航行2kmC.向北偏东60°方向航行2kmD.向东北方向航行(1+3)km答案:如图,作OA=a,OB=b.则OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏东30°方向航行2km.故选B.39.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.40.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()
A.
B.
C.
D.答案:D41.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D42.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或043.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B44.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任两个均互斥
D.任两个均不互斥答案:B45.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.46.在数列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)计算a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.②假设n=k时命题成立,即ak=2k+1当n=k+1时ak+1=2a
k2+ak=2×2k+12+2k+1(把假设作为条件代入)=42(k+1)+2=2(k+1)+1由①②知命题对一切n∈N*均成立.47.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(
)
A.
B.
C.
D.答案:B48.如图程序框图表达式中N=______.答案:该程序按如下步骤运行①N=1×2,此时i变成3,满足i≤5,进入下一步循环;②N=1×2×3,此时i变成4,满足i≤5,进入下一步循环;③N=1×2×3×4,此时i变成5,满足i≤5,进入下一步循环;④N=1×2×3×4×5,此时i变成6,不满足i≤5,结束循环体并输出N的值因此,最终输出的N等于1×2×3×4×5=120故为:12049.当x∈N+时,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.50.经过点P(4,-2)的抛物线的标准方程为()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C第3卷一.综合题(共50题)1.已知向量=(1,2),=(2,x),且=-1,则x的值等于()
A.
B.
C.
D.答案:D2.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.答案:(1)点P的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9种,其中落在区域C:x2+y2≤10上的点P的坐标有:(0,0),(0,2),(2,0),(2,2),共4种D、故点P落在区域C:x2+y2≤10内的概率为49.(2)区域M为一边长为2的正方形,其面积为4,区域C的面积为10π,则豆子落在区域M上的概率为25π.3.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.4.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.5.下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2个向量的坐标对应成比例,0-2=01,所以,这2个向量是共线向量,故不能作为基底.B、中的2个向量的坐标对应成比例,46=69,所以,这2个向量是共线向量,故不能作为基底.C中的2个向量的坐标对应不成比例,2-6≠-54,所以,这2个向量不是共线向量,故可以作为基底.D、中的2个向量的坐标对应成比例,212=-3-34,这2个向量是共线向量,故不能作为基底.故选C.6.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()
A.
B.
C.
D.答案:D7.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.8.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()
A.
B.
C.
D.
答案:A9.命题“若A∩B=A,则A∪B=B”的逆否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.故选C.10.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A11.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.12.已知向量a,b满足|a|=2,|b|=3,|2a+b|=则a与b的夹角为()
A.30°
B.45°
C.60°
D.90°答案:C13.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C14.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,
=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.15.中心在坐标原点,离心率为的双曲线的焦点在y轴上,则它的渐近线方程为()
A.
B.
C.
D.答案:D16.已知,求证:答案:证明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.17.若抛物线y2=4x上一点P到其焦点的距离为3,则点P的横坐标等于______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=3=x+p2=3,∴x=2,故为:2.18.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.19.在下列条件中,使M与不共线三点A、B、C,一定共面的是
[
]答案:C20.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程
y=
bx+
a中的
b为9.4,则
a=______.答案:由图表中的数据可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即样本中心为(3.5,42),将点代入回归方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故为:9.1.21.若已知中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,则该椭圆的方程为______.答案:设椭圆的方程是x2a2+y2b2=1,由题设,中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式联立可以解得a=3,b=2,c=1或a=7,b=143,c=73故该椭圆的方程为x23+y22=1或x27+y2149=1故应填x23+y22=1或x27+y2149=122.若点P(-1,3)在圆x2+y2=m2上,则实数m=______.答案:∵点P(-1,3)在圆x2+y2=m2上,∴点P坐标代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故为:±223.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.
A.60
B.150
C.300
D.210答案:B24.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.25.若直线
3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()
A.-1
B.1
C.3
D.-3答案:B26.已知a、b、c是实数,且a2+b2+c2=1,求2a+b+2c的最大值.答案:因为已知a、b、c是实数,且a2+b2+c2=1根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值为3.27.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于28.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.29.(理科)若随机变量ξ~N(2,22),则D(14ξ)的值为______.答案:解;∵随机变量ξ服从正态分布ξ~N(2,22),∴可得随机变量ξ方差是4,∴D(14ξ)的值为142D(ξ)=142×4=14.故为:14.30.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm31.直线y=3x+3的倾斜角的大小为______.答案:∵直线y=3x+3的斜率等于3,设倾斜角等于α,则0°≤α<180°,且tanα=3,∴α=60°,故为60°.32.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.33.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是
()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.34.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;235.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C36.已知单位向量a,b的夹角为,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B37.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.38.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 打架保证书告别冲动珍爱生命
- 下滑成绩的悔过保证书
- 苗木采购合同范本格式格式
- 短期借款合同
- 防火重于泰山生命高于一切
- 生鲜鸡蛋买卖协议
- 城市更新拆迁补偿
- 饲料购销半年合同
- 电信服务合同法律适用规定
- 惠州二手房买卖合同签订步骤
- 综合英语智慧树知到期末考试答案章节答案2024年喀什大学
- 口腔科医疗安全隐患
- 《建筑施工安全检查标准》JGJ59-20248
- 宪法知识宣传总结报告
- (正式版)SHT 3078-2024 立式圆筒形料仓工程设计规范
- 外侧Hoffa骨折手术入路
- 2023年全国统一高考化学试卷(辽宁卷)含答案与解析
- 国开2024年《钢结构(本)》阶段性学习测验1-4答案
- 【小升初】部编版2023-2024学年六年级下册期末语文检测卷(含答案)
- 幼儿教师礼仪训练教程期末试卷及答案
- 2024年中国铁道科学研究院集团有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论