版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年浙江同济科技职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.以下命题:
①两个共线向量是指在同一直线上的两个向量;
②共线的两个向量互相平行;
③共面的三个向量是指在同一平面内的三个向量;
④共面的三个向量是指平行于同一平面的三个向量.
其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.2.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(
)。答案:3:13.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()
A.
B.
C.
D.答案:D4.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为(
)
A.10组
B.9组
C.8组
D.7组答案:B5.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=f(x)x(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.6.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).7.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()
A.
B.
C.
D.2答案:C8.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.9.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是(
)
A.(0,1)
B.
C.
D.答案:C10.有五条线段长度分别为1、3、5、7、9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为()A.110B.310C.12D.710答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从五条线段中取三条共有C53种结果,而满足条件的事件是3、5、7;3、7、9;5、7、9,三种结果,∴由古典概型公式得到P=3C35=310,故选B.11.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.12.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.13.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),则a•(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a•(b+c)=(2,-3,1)•(2,2,5)=4-6+5=3.故为:3.14.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.15.给出以下四个对象,其中能构成集合的有()
①教2011届高一的年轻教师;
②你所在班中身高超过1.70米的同学;
③2010年广州亚运会的比赛项目;
④1,3,5.A.1个B.2个C.3个D.4个答案:解析:因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.故选C.16.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)17.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)
分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.18.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件答案:C19.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(
)。答案:34℃或45℃20.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B21.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且,则下列命题中正确命题的个数为(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C22.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).23.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为724.列举两种证明两个三角形相似的方法.答案:三边对应成比例,两个三角形相似,两边对应成比例且夹角相等,两个三角形相似.25.已知x,y的取值如下表所示:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.526.设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()
A.1
B.4
C.2
D.不能确定答案:B27.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22328.若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=______.答案:抛物线方程整理得x2=1ay,焦点(0,14a)l被抛物线截得的线段长即为通径长1a,故1a=4,a=14;故为14.29.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.30.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.31.算法:第一步
x=a;第二步
若b>x则x=b;第三步
若c>x,则x=c;
第四步
若d>x,则x=d;
第五步
输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.32.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c233.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;
(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)
设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.34.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).35.(几何证明选做题)若A,B,C是⊙O上三点,PC切⊙O于点C,∠ABC=110°,∠BCP=40°,则∠AOB的大小为______.答案:∵PC切⊙O于点C,OC为圆的半径∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圆周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故为:60°36.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C37.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)38.设向量a,b,c满足a+b+c=0,a⊥b,且a,b的模分别为s,t,其中s=a1=1,t=a3,an+1=nan,则c的模为______.答案:∵向量a,b,c满足a+b+c=0,a⊥b,∴向量a,b,c构成一个直角三角形,如图∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故为:5.39.设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(1)求点p的轨迹方程;
(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以动点P的轨迹M是以点E(-1,0),F(1,0)为焦点,长轴长为4的椭圆.因为c=1,a=2,则b2=a2-c2=3.故动点P的轨迹M方程是x24+y23=1(2)设直线BC的方程x=my+1与(1)中的椭圆方程x24+y23=1联立消去x可得(3m2+4)y2+6my-9=0,设点B(x1,y1),C(x2,y2)则y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4点A到直线BC的距离d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面积最大值为9240.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.41.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:A42.有一个质地均匀的正四面体,它的四个面上分别标有1,2,3,4这四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S,则“S恰好为4”的概率为______.答案:由题意知本题是一个古典概型,试验发生包含的事件是抛掷这颗正四面体骰子两次,共有4×4×4=64种结果,满足条件的事件是三次在正四面体底面的数字和为S,S恰好为4,可以列举出这种事件,(1,1,2),(1,2,1),(2,1,1)共有3种结果,根据古典概型概率公式得到P=364,故为:364.43.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过
B作BD⊥AC于D,BD交⊙O于E点,若AE平分
∠BAD,则∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D44.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.45.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).46.数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步验证的表达式为______.答案:根据数学归纳法的步骤,首先要验证证明当n取第一个值时命题成立;结合本题,要验证n=1时,2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故为:21+1≥12+1+2(22≥4或4≥4也算对).47.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.48.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()
A.相离
B.相切或相交
C.相交
D.相切答案:C49.命题“零向量与任意向量共线”的否定为______.答案:命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.故为:“有的向量与零向量不共线”.50.已知θ是三角形内角且sinθ+cosθ=,则表示答案:C第2卷一.综合题(共50题)1.刻画数据的离散程度的度量,下列说法正确的是(
)
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C2.点(1,2)到原点的距离为()
A.1
B.5
C.
D.2答案:C3.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.4.不等式的解集是
.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.5.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A6.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()
A.
B.
C.
D.答案:A7.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).8.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.9.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为
______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7610.在下列条件中,使M与不共线三点A、B、C,一定共面的是
[
]答案:C11.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率
P(A)=13.故选B12.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)13.已知集合A满足{1,2,3}∪A={1,2,3,4},则集合A的个数为______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},则集合A的个数为8.故为:814.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是60
cm,灯深40
cm,则光源到反射镜顶点的距离是
______cm.答案:设抛物线方程为y2=2px(p>0),点(40,30)在抛物线y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射镜顶点的距离为458cm.15.如图是《集合》的知识结构图,如果要加入“子集”,那么应该放在()
A.“集合”的下位
B.“含义与表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位
答案:C16.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.17.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.18.顶点在原点,焦点是(0,5)的抛物线方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A19.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(
)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.20.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;
(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).21.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()
A.1
B.2
C.3
D.0答案:B22.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8323.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.24.在平行四边形ABCD中,等于()
A.
B.
C.
D.答案:C25.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a=1
C.a>1
D.以上均不对答案:C26.一个算法的流程图如图所示,则输出S的值为
.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.27.已知曲线C的参数方程为x=4t2y=t(t为参数),若点P(m,2)在曲线C上,则m=______.答案:因为曲线C的参数方程为x=4t2y=t(t为参数),消去参数t得:x=4y2;∵点P(m,2)在曲线C上,所以m=4×4=16.故为:16.28.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()
A.直线
B.椭圆
C.抛物线
D.双曲线答案:D29.用综合法或分析法证明:
(1)如果a>0,b>0,则lga+b2≥lga+lgb2(2)求证6+7>22+5.答案:证明:(1)∵a>0,b>0,a+b2≥ab,∴lga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要证6+7>22+5,只需证明(6+7)
2>(8+5)2,即证明242>
240,也就是证明42>40,上式显然成立,故原结论成立.30.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,求不同着色方法共有多少种?(以数字作答).答案:本题是一个分类和分步综合的题目,根据题意可分类求第一类用三种颜色着色,由乘法原理C14C41
C12=24种方法;第二类,用四种颜色着色,由乘法原理有2C14C41
C12
C11=48种方法.从而再由加法原理得24+48=72种方法.即共有72种不同的着色方法.31.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.32.若椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是______.答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故为433.从椭圆
x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=10+5,求椭圆的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x轴∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴椭圆方程为x210+y25=1.34.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填12435.下面玩掷骰子放球游戏,若掷出1点或6点,甲盒放一球;若掷出2点,3点,4点或5点,乙盒放一球,设掷n次后,甲、乙盒内的球数分别为x、y.
(1)当n=3时,设x=3,y=0的概率;
(2)当n=4时,求|x-y|=2的概率.答案:由题意知,在甲盒中放一球概率为13,在乙盒放一球的概率为23(3分)(1)当n=3时,x=3,y=0的概率为C03(13)3(23)0=127(6分)(2)|x-y|=2时,有x=3,y=1或x=1,y=3,它的概率为C14
(13)3(23)1+C34(13)1(23)3=4081(12分).36.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论37.知x、y、z均为实数,
(1)若x+y+z=1,求证:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明
因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.
14分38.
在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()
A.
B.
C.
D.答案:D39.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A40.已知直线l:kx-y+1+2k=0.
(1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).41.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:16542.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线l:y=p2于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.答案:(1)设A(x1,x122p),则A处的切线方程为l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ为等腰三角形.由点A,Q,D的坐标可知:D为线段AQ的中点,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)设B(x2,y2)(x2<0),则B处的切线方程为y=x22x-x224联立y=x22x-x224y=x12x-x214得到点P(x1+x22,x1x24),联立y=x12x-x214y=1得到点M(x12+2x1,1).同理N(x22+2x2,1),设h为点P到MN的距离,则S△=12|MN|•h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①设AB的方程为y=kx+b,则b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面积最小,则应k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,则S′△(t)=(3t2-1)(t2+1)t2,所以当t∈(0,33)时,S(t)单调递减;当t∈(33,+∞)时,S(t)单调递增,所以当t=33时,S取到最小值为1639,此时b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面积取得最小值时的x1值为233.43.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.44.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.45.某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为ξ,求ξ的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.答案:(I)ξ的所有可能的取值为0,1,2,3,….….(2分)则P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列为ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)记“张强被选中”为事件A,“李莉也被选中”为事件B,则P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)46.满足条件|2z+1|=|z+i|的复数z在复平面上对应点的轨迹是______.答案:设复数z在复平面上对应点的坐标为(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化简可得x2+
y2+43x
=
0,表示一个圆,故为圆.47.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A48.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()
A.逗号
B.空格
C.分号
D.顿号答案:A49.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B50.如果如图所示的程序中运行后输出的结果为132,那么在程序While后面的“条件”应为______.答案:第一次循环之后s=12,i=11;第二次循环之后结果是s=132,i=10,已满足题意跳出循环.由于此循环体是当型循环i=12、11都满足条件,i=10不满足条件.故为:i≥11第3卷一.综合题(共50题)1.若复数(1+bi)•(2-i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-12C.12D.2答案:由(1+bi)•(2-i)=2+b+(2b-1)i是纯虚数,则2+b=02b-1≠0,解得b=-2.故选A.2.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()
A.3
B.4
C.5
D.6答案:C3.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.4.算法:第一步
x=a;第二步
若b>x则x=b;第三步
若c>x,则x=c;
第四步
若d>x,则x=d;
第五步
输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.5.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:26.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).7.如图,梯形ABCD内接于⊙O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故为:60°8.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C9.给出下列结论:
(1)两个变量之间的关系一定是确定的关系;
(2)相关关系就是函数关系;
(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;
(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
以上结论中,正确的有几个?()
A.1
B.2
C.3
D.4答案:A10.设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|MN|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为a=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准54下线性近似”.
其中所有正确结论的番号为______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的横坐标为λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y轴∴直线MN的方向向量可以为a=(0,1),故②成立对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函数y=5x2在[0,1]上可在标准54下线性近似”,故④成立,③不成立,故为:①②④11.若椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是______.答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故为412.下面是一个算法的伪代码.如果输出的y的值是10,则输入的x的值是______.答案:由题意的程序,若x≤5,y=10x,否则y=2.5x+5,由于输出的y的值是10,当x≤5时,y=10x=10,得x=1;当x>5时,y=2.5x+5=10,得x=2,不合,舍去.则输入的x的值是1.故为:1.13.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C14.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为______.答案:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(12,0),依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故为:172.15.正方形ABCD的边长为1,=,=,则|+|=(
)
A.0
B.2
C.
D.2答案:C16.设U={三角形},M={直角三角形},N={等腰三角形},则M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故为{等腰直角三角形}17.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.18.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ19.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D20.若下列算法的程序运行的结果为S=132,那么判断框中应填入的关于k的判断条件是
______.答案:本题考查根据程序框图的运算,写出控制条件按照程序框图执行如下:s=1
k=12s=12
k=11s=12×11=132
k=10因为输出132故此时判断条件应为:K≤10或K<11故为:K≤10或K<1121.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°22.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.23.抛物线的顶点在原点,焦点与椭圆=1的一个焦点重合,则抛物线方程是()
A.x2=±8y
B.y2=±8x
C.x2=±4y
D.y2=±4x答案:A24.已知
|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a25.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.26.螺母是由
______和
______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.27.已知关于的不等式的解集为,且,求的值答案:,,解析:用数形结合法,如图显然解集是,即,从而此时=与交点横坐标为5,从而纵坐标为4,将交点坐标代入可得所以,,28.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()
A.2个
B.3个
C.6个
D.9个
答案:D29.直线过原点且倾角的正弦值是45,则直线方程为______.答案:因为倾斜角α的范围是:0≤α<π,又由题意:sinα=45所以:tanα=±43x直线过原点,由直线的点斜式方程得到:y=±43x故为:y=±43x30.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.31.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A32.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.
(I)求直线的普通方程和圆的直角坐标方程;
(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)33.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是______.答案:由题意知本题是一个古典概型,试验发生包含的基本事件有C52=10种结果,其中至少有一个红球的事件包括C22+C21C31=7个基本事件,根据古典概型公式得到P=710,故为:710.34.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.35.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作总结之党校进修总结处级干部党校培训总结
- 电工电子技术(第3版) 课件 1.5 电容
- 2024年固体分散载体材料项目资金筹措计划书代可行性研究报告
- 银行员工薪酬体系制度
- 银行客户关系管理规范制度
- 重庆市丰都县2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 《讲Scilab基本操作》课件
- 2011世界顶级名车品时尚盛宴
- 山东省临沂市蒙阴县实验中学2025届高考英语一模试卷含解析
- 安徽省合肥一中等六校教育研究会2025届高三下学期第五次调研考试语文试题含解析
- 2024-2025学年语文二年级上册 部编版期末测试卷 (含答案)
- 语文修改语病-三年(2022-2024)高考病句试题真题分析及 备考建议(课件)
- 中国抗癌协会胰腺癌患者科普指南2024(完整版)
- 齐鲁名家谈方论药 知到智慧树网课答案
- 2023人工智能基础知识考试题库(含答案)
- cecs31-2017钢制电缆桥架工程设计规范
- 小学语文跨学科学习任务群的设计
- 《敬廉崇洁》的主题班会
- 国家开放大学电大《计算机应用基础(本)》终结性考试试题答案(格式已排好)任务一
- 增值税预缴税款表电子版
- 学生学习评价量表模板
评论
0/150
提交评论