版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年黔东南民族职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个D.1个答案:命题“若a>b,则ac2>bc2”为假命题;其逆命题为“若ac2>bc2,则a>b”为真命题;其否命题为“若a≤b,则ac2≤bc2”为真命题;其逆否命题为“若ac2≤bc2,则a≤b”为假命题;故选C2.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A3.用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.答案:(Ⅰ)由题意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3则甲获胜的概率为P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)4.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.5.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为
π3.6.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π57.若由一个2*2列联表中的数据计算得k2=4.013,那么有()把握认为两个变量有关系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A8.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.9.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.10.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为
λ=2,故为:2.11.已知圆锥的母线长为5,底面周长为6π,则圆锥的体积是______.答案:圆锥的底面周长为6π,所以圆锥的底面半径为3;圆锥的高为4所以圆锥的体积为13×π32×4=12π故为12π.12.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.13.已知圆C:x2+y2-4y-6y+12=0,求:
(1)过点A(3,5)的圆的切线方程;
(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.14.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.15.方程ax2+2x+1=0至少有一个负的实根的充要条件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0答案:C16.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为()
A.
B.
C.
D.答案:D17.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:218.椭圆上有一点P,F1,F2是椭圆的左、右焦点,△F1PF2为直角三角形,则这样的点P有()
A.3个
B.4个
C.6个
D.8个答案:C19.Rt△ABC的直角边AB在平面α内,顶点C在平面α外,则直角边BC、斜边AC在平面α上的射影与直角边AB组成的图形是()
A.线段或锐角三角形
B.线段与直角三角形
C.线段或钝角三角形
D.线段、锐角三角形、直角三角形或钝角三角形答案:B20.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+121.双曲线x2a2-y2b2=1,(a>0,b>0)的一条渐近线方程是y=3x,坐标原点到直线AB的距离为32,其中A(a,0),B(0,-b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N,求B1M⊥B1N时,直线MN的方程.答案:(1)∵A(a,0),B(0,-b),∴设直线AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴双曲线方程为:x23-y29=1.(2)∵双曲线方程为:x23-y29=1,∴A1(-3,0),A2(3,0),设P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),设M(x1,y1),N(x2,y2)∴设直线l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M•B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴lMN:y=±5x-3.22.如图的曲线是指数函数y=ax的图象,已知a的值取,,,则相应于曲线①②③④的a的值依次为()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A23.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()
A.
B.
C.
D.答案:B24.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.25.曲线(θ为参数)上的点到原点的最大距离为()
A.1
B.
C.2
D.答案:C26.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)27.某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为ξ,求ξ的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.答案:(I)ξ的所有可能的取值为0,1,2,3,….….(2分)则P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列为ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)记“张强被选中”为事件A,“李莉也被选中”为事件B,则P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)28.下列语句是命题的是______.
①求证3是无理数;
②x2+4x+4≥0;
③你是高一的学生吗?
④一个正数不是素数就是合数;
⑤若x∈R,则x2+4x+7>0.答案:①是祈使句,所以①不是命题.②是命题,能够判断真假,因为x2+4x+4=(x+2)2≥0,所以②是命题.③是疑问句,所以③不是命题.④能够判断真假,所以④是命题.⑤能够判断真假,因为x2+4x+7=(x+2)2+3>0,所以⑤是命题.故为:②④⑤.29.设椭圆=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()
A.ab
B.ab
C.ab
D.2ab答案:B30.已知函数f(x)=x+3x+1(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤(3-1)n2n-1;
(Ⅱ)证明Sn<233.答案:证明:(Ⅰ)当x≥0时,f(x)=1+2x+1≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤(3-1)n2n-1.(1)当n=1时,b1=3-1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)•1-(3-12)n1-3-12<(3-1)•11-3-12=233.故对任意n∈N*,Sn<233.31.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N+时,求证:A≥B.答案:证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得当x≥1时,x-1≥0,x2n-1-1≥0;当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.32.已知一直线斜率为3,且过A(3,4),B(x,7)两点,则x的值为()
A.4
B.12
C.-6
D.3答案:A33.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)34.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.66535.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.36.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:237.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.38.已知函数f(x)=x2+2,x≥13x,x<1,则f(f(0))=()A.4B.3C.9D.11答案:因为f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故选B.39.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.
(I)求直线的普通方程和圆的直角坐标方程;
(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)40.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B41.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1
1][x']=[x0][1
1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.42.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求此抛物线方程.答案:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴抛物线的方程为y2=12x或y2=-4x43.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4
i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.44.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)45.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.ax-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A46.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.47.直线y=2x与直线x+y=3的交点坐标是
______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).48.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故选A.49.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.50.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()
A.
B.
C.
D.答案:C第2卷一.综合题(共50题)1.已知抛物线的顶点在坐标原点,焦点在x轴正半轴,抛物线上一点M(3,m)到焦点的距离为5,求m的值及抛物线方程.答案:∵抛物线顶点在原点,焦点在x轴上,其上一点M(3,m)∴设抛物线方程为y2=2px∵其上一点M(3,m)到焦点的距离为5,∴3+p2=5,可得p=4∴抛物线方程为y2=8x.2.已知函数f(x)=x2+2,x≥13x,x<1,则f(f(0))=()A.4B.3C.9D.11答案:因为f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故选B.3.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[
]A
.4
B.1
C.10
D.11答案:D4.在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为()个.
A.0
B.1
C.2
D.3答案:B5.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.6.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为
______,在Oy轴上的点P2的坐标特点为
______,在Oz轴上的点P3的坐标特点为
______,在xOy平面上的点P4的坐标特点为
______,在yOz平面上的点P5的坐标特点为
______,在xOz平面上的点P6的坐标特点为
______.答案:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).7.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.8.过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F1构成的△ABF2的周长为()
A.2
B.2
C.4
D.8答案:C9.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C10.选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于______.答案:连接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一个等边三角形,∴OA=AB=4,∴⊙O的面积是16π故为16π11.下列在曲线上的点是()
A.
B.
C.
D.答案:D12.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈
(32
,
3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;
(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈
(32
,
3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈
(32
,
3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0
,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)13.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.14.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).15.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C16.下列叙述中:
①变量间关系有函数关系,还有相关关系;②回归函数即用函数关系近似地描述相关关系;③=x1+x2+…+xn;④线性回归方程一定可以近似地表示所有相关关系.其中正确的有()
A.①②③
B.①②④
C.①③
D.③④答案:A17.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25618.方程组的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C19.在三棱锥O-ABC中,M,N分别是OA,BC的中点,点G是MN的中点,则OG可用基底{OA,OB,OC}表示成:OG=______.答案:如图,连接ON,在△OBC中,点N是BC中点,则由平行四边形法则得ON=12(OB+OC)在△OMN中,点G是MN中点,则由平行四边形法则得OG=12(OM+ON)=12OM+12ON=14OA+12•12(OB+OC)14(OA+OB+OC),故为:14(OA+OB+OC).20.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D21.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积为6,则△ABC的面积为()A.18B.54C.64D.72答案:∵ABCD为平行四边形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故选D22.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.23.设向量不共面,则下列集合可作为空间的一个基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C24.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C25.设向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,则θ=______.答案:若a∥b,则sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故为:π4.26.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:______,______,______,______,______.答案:计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:输入语句,输出语句,赋值语句,条件语句,循环语句.故为:输入语句,输出语句,赋值语句,条件语句,循环语句.27.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.28.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C29.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.30.两平行直线x+3y-5=0与x+3y-10=0的距离是______.答案:根据题意,得两平行直线x+3y-5=0与x+3y-10=0的距离为d=|-5+10|12+32=102故为:10231.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:
(1)共有多少种不同的结果?并试着列举出来.
(2)两粒骰子点数之和等于3的倍数的概率;
(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.
…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.
…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.
…(12分)32.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A33.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤34.如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向2km处,河流沿岸PQ(曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B35.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.36.在画两个变量的散点图时,下面哪个叙述是正确的(
)
A.预报变量x轴上,解释变量y轴上
B.解释变量x轴上,预报变量y轴上
C.可以选择两个变量中任意一个变量x轴上
D.可以选择两个变量中任意一个变量y轴上答案:B37.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.
答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.38.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.39.在直角坐标系xoy
中,已知曲线C1:x=t+1y=1-2t(t为参数)与曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)
有一个公共点在X轴上,则a等于______.答案:曲线C1:x=t+1y=1-2t(t为参数)化为普通方程:2x+y-3=0,令y=0,可得x=32曲线C2:x=asinθy=3cosθ(θ为参数,a>0
)化为普通方程:x2a2+y29=1∵两曲线有一个公共点在x轴上,∴94a2=1∴a=32故为:3240.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3541.下列说法不正确的是()A.圆柱侧面展开图是一个矩形B.圆锥的过轴的截面是等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面答案:圆柱的侧面展开图是一个矩形,A正确,因为母线长相等,得到圆锥的轴截面是一个等腰三角形,B正确,圆台平行于底面的截面是圆面,D正确,故选C.42.过P(-1,1),Q(3,9)两点的直线的斜率为(
)
A.2
B.
C.4
D.答案:A43.梯形ABCD中,AB∥CD,AB=2CD,E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,则AM=______(用a,b表示).答案:连结CN并延长交AB于G,因为AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G为AB的中点,所以AC=12a+b,又E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,所以M为AC的中点,所以AM=12AC,所以AM=14a+12b.故为:14a+12b.44.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2011的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列∴OP2011的坐标为(2,4020)故为:(2,4020)45.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=λCA+μCB,则λμ的值为______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故为1246.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为()
A.0.1
B.0.2
C.0.3
D.0.4答案:C47.若复数(1+bi)•(2-i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-12C.12D.2答案:由(1+bi)•(2-i)=2+b+(2b-1)i是纯虚数,则2+b=02b-1≠0,解得b=-2.故选A.48.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.249.已知向量a=(2,0),b=(1,x),且a、b的夹角为π3,则x=______.答案:由两个向量的数量积的定义、数量积公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故为±3.50.用反证法证明命题“三角形的内角中至多有一个是钝角”时,第一步是:“假设______.答案:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“三角形的内角中至多有一个是钝角”的否定为:“三角形的内角中至少有两个钝角”,故为“三角形的内角中至少有两个钝角”.第3卷一.综合题(共50题)1.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[
]A
.4
B.1
C.10
D.11答案:D2.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.3.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.4.设直线y=kx与椭圆x24+y23=1相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A.±32B.±23C.±12D.±2答案:将直线与椭圆方程联立,y=kxx24+y23=1,化简整理得(3+4k2)x2=12(*)因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,故方程的两个根为±1.代入方程(*),得k=±32故选A.5.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故为C911(38)10(58)26.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c27.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12
时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.8.已知点A(1,0,0),B(0,2,0),C(0,0,3)则平面ABC与平面xOy所成锐二面角的余弦值为______.答案:AB=(-1,2,0),AC=(-1,0,3).设平面ABC的法向量为n=(x,y,z),则n•AB=-x+2y=0n•AC=-x+3z=0,令x=2,则y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).则cos<m,n>=m•n|m|
|n|=231×22+1+(23)2=27.故为27.9.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1210.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形11.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.12.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是
(
)A.B.C.D.答案:B解析:略13.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.14.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:515.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C16.不等式3≤|5-2x|<9的解集为()
A.[-2,1)∪[4,7)
B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7)
D.(-2,1]∪[4,7)答案:D17.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.18.以抛物线的焦点弦为直径的圆与其准线的位置关系是(
)
A.相切
B.相交
C.相离
D.以上均有可能答案:A19.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A20.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上答案:C21.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.22.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数23.下列命题错误的是(
)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.24.螺母是由
______和
______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.25.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.26.若实数X、少满足,则的范围是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D27.在正方形ABCD中,已知它的边长为1,设=,=,=,则|++|的值为(
)
A.0
B.3
C.2+
D.2答案:D28.设非零向量、、满足||=||=||,+=,则<,>=()
A.150°
B.120°
C.60°
D.30°答案:B29.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D30.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3531.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形32.直线y=kx+1与圆x2+y2=4的位置关系是()
A.相交
B.相切
C.相离
D.与k的取值有关答案:A33.若点A分有向线段所成的比是2,则点C分有向线段所成的比是()
A.
B.3
C.-2
D.-3答案:D34.设0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京民间个人借款合同书
- 居间采购合同居间行纪
- 全新房屋买卖作废合同下载
- 二手房标准买卖合同
- 工业机器人系统集成项目合同
- 电瓶买卖合同模板
- 公司驾驶员聘用合同
- 物流运输合同范本年
- 全新餐饮承包合同范文下载
- 二级建造师考试内部培训班讲义《建设工程法规及相关知识》
- 梁湘润《子平基础概要》简体版
- 图形的位似课件
- 调料厂工作管理制度
- 人教版《道德与法治》四年级下册教材简要分析课件
- 2023年MRI技术操作规范
- 办公用品、易耗品供货服务方案
- 医疗废物集中处置技术规范
- 媒介社会学备课
- 三相分离器原理及操作
- 新教科版五年级下册科学全册每节课后练习+答案(共28份)
- 葫芦岛尚楚环保科技有限公司医疗废物集中处置项目环评报告
评论
0/150
提交评论