




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年阜新高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:证明:不妨设a>b>c>0,则(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.2.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.答案:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(5分)(II)连接DF,由(I)知,DH是⊙O的直径,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.(10分)3.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C4.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.5.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)6.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.7.已知函数f(x)=2-x,x≤112+log2x,x>1,则满足f(x)≥1的x的取值范围为______.答案:当x≤1时,2-x≥1,解得-x≥0,即x≤0,所以x≤0;当x>1时,12+log2x≥1,解得x≥2,所以x≥2.所以满足f(x)≥1的x的取值范围为(-∞,0]∪[2,+∞).故为:(-∞,0]∪[2,+∞).8.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(
)
A.
B.
C.
D.答案:B9.已知椭圆C的中心在原点,焦点F1,F2在轴上,离心率e=22,且经过点M(0,2),求椭圆c的方程答案:若焦点在x轴很明显,过点M(0,2)点M即椭圆的上端点,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4椭圆:x24+y22=1若焦点在y轴,则a=2,ca=22,c=1∴b=1椭圆方程:x22+y2=1.10.已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终相切;
②对于任意的θ,圆C1与圆C2始终有四条公切线;
③当θ=π6时,圆C1被直线l:3x-y-1=0截得的弦长为3;
④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
其中正确命题的序号为
______.答案:①由圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,得到圆C1的圆心(2cosθ,2sinθ),半径R=1;圆C2的圆心(0,0),半径r=1,则两圆心之间的距离d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以两圆的位置关系是外切,此正确;②由①得两圆外切,所以公切线的条数是3条,所以此错误;③把θ=π6代入圆C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圆心(3,1)到直线l的距离d=|3-2|3+1=12,则圆被直线l截得的弦长=21-(12)2=3,所以此正确;④由两圆外切得到|PQ|=2+2=4,此正确.综上,正确的序号为:①③④.故为:①③④11.已知(2x+1)3的展开式中,二项式系数和为a,各项系数和为b,则a+b=______.(用数字表示)答案:由题意可得(2x+1)3的展开式中,二项式系数和为a=23=8令x=1可得各项系数和为b=(2+1)3=27∴a+b=35故为:3512.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是4和3及x,那么x的值的个数为()
A.1个
B.2个
C.2个以上但有限
D.无数个答案:B13.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.
B.
C.
D.
答案:B14.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:215.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.16.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)17.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.18.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.19.下图是由哪个平面图形旋转得到的(
)答案:A20.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.21.已知x,y之间的一组数据:
x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C22.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.23.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.24.数据:1,1,3,3的众数和中位数分别是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A25.如图的曲线是指数函数y=ax的图象,已知a的值取,,,则相应于曲线①②③④的a的值依次为()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A26.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.27.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则A1B1=A2B2是l1∥l2的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:当A1B1=A2B2
时,两直线可能平行,也可能重合,故充分性不成立.当l1∥l2时,B1与B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.综上,A1B1=A2B2是l1∥l2的既非充分又非必要条件,故选D.28.用辗转相除法或者更相减损术求三个数的最大公约数.答案:同解析解析:解:324=243×1+81
243=81×3+0
则324与243的最大公约数为81又135=81×1+54
81=54×1+27
54=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法为所求。29.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.30.设、、为实数,,则下列四个结论中正确的是(
)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.31.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.32.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.33.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.34.设p,q是简单命题,则“p且q为真”是“p或q为真”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案:若“p且q为真”成立,则p,q全真,所以“p或q为真”成立若“p或q为真”则p,q全真或真q假或p假q真,所以“p且q为真”不一定成立∴“p且q为真”是“p或q为真”的充分不必要条件故选B35.如图是一个正三棱柱体的三视图,该柱体的体积等于()A.3B.23C.2D.33答案:根据长对正,宽相等,高平齐,可得底面正三角形高为3,三棱柱高为1所以正三角形边长为3sin60°=2,所以V=12×2×3×1=3,故选A.36.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.37.在△ABC中,已知A(2,3),B(8,-4),点G(2,-1)在中线AD上,且|AG|=2|GD|,则C的坐标为______.答案:设C(x,y),则D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故为:(-4,-2).38.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,2009年8月15日至8
月28日,某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.25B.50C.75D.100答案:∵血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,通过频率分步直方图知道属于醉驾的频率是(0.005+0.01)×10=0.15,∵样本容量是500,∴醉驾的人数有500×0.15=75故选C.39.抛物线y=4x2的焦点坐标是______.答案:由题意可知x2=14y∴p=18∴焦点坐标为(0,116)故为(0,116)40.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.41.选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
答案:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为5242.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.43.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.44.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:
成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.45.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求异面直线BD1与CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)46.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且
y=0.95x+
a,则
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.47.直线l1过点P(0,-1),且倾斜角为α=30°.
(I)求直线l1的参数方程;
(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)
(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)48.若a<b<c,x<y<z,则下列各式中值最大的一个是()
A.ax+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.ax+by+cz答案:D49.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.50.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足PN+12NM=0,PM•PF=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.答案:(Ⅰ)设N(x,y),则由PN+12NM=0,得P为MN的中点.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM•PF=-x+y24=0,即y2=4x.∴动点N的轨迹E的方程y2=4x.(Ⅱ)设直线l的方程为y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.设A(x1,y1),B(x2,y2),则
y1+y2=4k,y1y2=-4.假设存在点C(m,0)满足条件,则CA=(x1-m,y1),CB=(x2-m,y2),∴CA•CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴关于m的方程m2-m(4k2+2)-3=0有解.∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.第2卷一.综合题(共50题)1.(选做题)那霉素发酵液生物测定,一般都规定培养温度为(37±1)°C,培养时间在16小时以上,某制药厂为了缩短时间,决定优选培养温度,试验范围固定在29~50°C,精确度要求±1°C,用分数法安排实验,令第一试点在t1处,第二试点在t2处,则t1+t2=(
).答案:792.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.3.已知向量与的夹角为120°,若向量,且,则=()
A.2
B.
C.
D.答案:C4.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=()A.43B.8C.83D.16答案:抛物线的焦点F(2,0),准线方程为x=-2,直线AF的方程为y=-3(x-2),所以点A(-2,43)、P(6,43),从而|PF|=6+2=8故选B.5.设a=(4,3),a在b上的投影为522,b在x轴上的投影为2,且|b|≤14,则b为()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x轴上的投影为2,∴设b=(2,y)∵a在b上的投影为522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故选B6.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.7.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故为:20068.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).9.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为______.答案:a2+b2的几何意义是到原点的距离,它的最小值转化为原点到直线3x+4y=15的距离:d=155=3.故为3.10.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)11.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(
)。答案:(2.5,2.5)12.点(1,-1)在圆(x-a)2+(y-a)2=4的内部,则a取值范围是()
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a≠±1答案:A13.已知函数f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,
x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.14.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[
]A
.4
B.1
C.10
D.11答案:D15.已知矩阵A=12-14,向量a=74.
(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)16.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.3D.2答案:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.17.下列命题中,正确的是()
A.若a∥b,则a与b的方向相同或相反
B.若a∥b,b∥c,则a∥c
C.若两个单位向量互相平行,则这两个单位向量相等
D.若a=b,b=c,则a=c答案:D18.将函数="2x"+1的图像按向量平移得函数=的图像则
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.19.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.20.已知平面向量a=(0,1),b=(x,y),若a⊥b,则实数y=______.答案:由题意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故为021.椭圆x216+y27=1上的点M到左准线的距离为53,则点M到左焦点的距离为()A.8B.5C.274D.54答案:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=4,b=7∴c=3∴e=ca=34,∴根据椭圆的第二定义有:MF
1d=34∴M到左焦点的距离为MF1=53×34=54故选D.22.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].23.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于
A.
B.
C.
D.答案:D24.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A25.某自动化仪表公司组织结构如图所示,其中采购部的直接领导是()
A.副总经理(甲)
B.副总经理(乙)
C.总经理
D.董事会
答案:B26.给出下列结论:
(1)在回归分析中,可用指数系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)在回归分析中,可用相关系数r的值判断模型的拟合效果,r越大,模型的拟合效果越好;
(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
以上结论中,正确的有()个.
A.1
B.2
C.3
D.4答案:B27.在空间直角坐标系中,已知两点P1(-1,3,5),P2(2,4,-3),则|P1P2|=()
A.
B.3
C.
D.答案:A28.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤29.命题“对于正数a,若a>1,则lg
a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4答案:原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.故选D.30.若关于x,y的二元一次方程组m11mxy=m+12m至多有一组解,则实数m的取值范围是______.答案:关于x,y的二元一次方程组m11mxy=m+12m即二元一次方程组mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)当m-1≠0时(m2-1)x=m(m-1)至多有一组解∴m≠1故为:(-∞,1)∪(1,+∞)31.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()
A.
B.
C.2
D.3
答案:C32.构成多面体的面最少是(
)
A.三个
B.四个
C.五个
D.六个答案:B33.如图表示空间直角坐标系的直观图中,正确的个数为()
A.1个
B.2个
C.3个
D.4个答案:C34.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C35.已知2a=3b=6c则有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C36.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A37.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.38.某市某年一个月中30天对空气质量指数的监测数据如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.
分组频数频率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下图所示.
…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)101030[91,101)3330………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a,b,c,质量指数在区间[101,111)内的有2天,记这两天分别为d,e,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)39.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.40.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D41.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B42.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。43.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B44.设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.答案:证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.当且仅当a=b=c时,等号成立.45.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+
AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-2246.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.47.若a2+b2=4,则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是______.答案:若a2+b2=4,由于两圆(x-a)2+y2=1和x2+(y-b)2=1的圆心距为(a-0)2+(0-b)2=a2+b2=2,正好等于两圆的半径之和,故两圆相外切,故为相外切.48.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1449.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故为C.50.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()
A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角
B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角
C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角
D.以上都不对答案:B第3卷一.综合题(共50题)1.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.2.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=______.答案:∵所测量的“量佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=a1+a2+…+ann,故为:a1+a2+…+ann3.等于()
A.
B.
C.
D.答案:B4.在数列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)计算a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.②假设n=k时命题成立,即ak=2k+1当n=k+1时ak+1=2a
k2+ak=2×2k+12+2k+1(把假设作为条件代入)=42(k+1)+2=2(k+1)+1由①②知命题对一切n∈N*均成立.5.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④6.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C7.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,1058.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0
(c>0)之间的距离为,则等于()
A.-2
B.-6
C..2
D.0答案:A9.已知f(x)=,若f(x0)>1,则x0的取值范围是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C10.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A11.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.12.“所有10的倍数都是5的倍数,某数是10的倍数,则该数是5的倍数,”上述推理()
A.完全正确
B.推理形式不正确
C.错误,因为大小前提不一致
D.错误,因为大前提错误答案:A13.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.14.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为
______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.15.制作一个面积为1
m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长
l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.16.(几何证明选讲选做题)
如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是______.答案:∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故为:22.17.如图,梯形ABCD内接于⊙O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故为:60°18.(本小题满分10分)数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1000的所有“水仙花数”.
(1)用自然语言写出算法;
(2)画出流程图.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,则执行第三步,否则算法结束.第三步,若这个数i等于它各位上的数字的立方的和,则输出这个数.第四步,i=i+1,返回第二步.(2)程序框图,如右图所示.19.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为
______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.20.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2321.不等式的解集是(
)
A.
B.
C.
D.答案:D22.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.3D.2答案:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.23.3i(1+i)2的虚部等于______.答案:3i(1+i)2=2,所以其虚部等于0,故为024.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈
(32
,
3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;
(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈
(32
,
3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈
(32
,
3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0
,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)25.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B26.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:1027.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:C28.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上答案:C29.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面答案:B30.平面向量a与b的夹角为60°,a=(2,0),|b|=1
则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1
∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.31.已知|a|=1,|b|=2,<a,b>=60°,则|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故为:2332.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.33.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c234.定点F1,F2,且|F1F2|=8,动点P满足|PF1|+|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论