2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年辽河石油职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.下列命题:

①垂直于同一直线的两直线平行;

②垂直于同一直线的两平面平行;

③垂直于同一平面的两直线平行;

④垂直于同一平面的两平面平行;

其中正确的有()

A.③④

B.①②④

C.②③

D.②③④答案:C2.若函数f(2x+1)=x2-2x,则f(3)=______.答案:解法一:(换元法求解析式)令t=2x+1,则x=t-12则f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(凑配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(凑配法求解析式)∵f(2x+1)=x2-2x令2x+1=3则x=1此时x2-2x=-1∴f(3)=-1故为:-13.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.4.方程组的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A5.已知直线过点A(2,0),且平行于y轴,方程:|x|=2,则(

A.l是方程|x|=2的曲线

B.|x|=2是l的方程

C.l上每一点的坐标都是方程|x|=2的解

D.以方程|x|=2的解(x,y)为坐标的点都在l上答案:C6.定点F1,F2,且|F1F2|=8,动点P满足|PF1|+|PF2|=8,则点P的轨迹是()A.椭圆B.圆C.直线D.线段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①当点P不在直线F1F2上时,根据三角形两边之和大于第三边,得|PF1|+|PF2|>|F1F2|,不符合题意;②当点P在直线F1F2上时,若点P在F1、F2两点之外时,可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合题意;若点P在F1、F2两点之间(或与F1、F2重合)时,可得|PF1|+|PF2|=|F1F2|,符合题意.综上所述,得点P在直线F1F2上且在F1、F2两点之间或与F1、F2重合,故点P的轨迹是线段F1F2.故选:D7.求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.答案:证明:假设函数y=f(x)的图象与x轴有两个交点…(2分)设交点的横坐标分别为x1,x2,且x1<x2.因为函数y=f(x)在实数集上单调递减所以f(x1)>f(x2),…(6分)这与f(x1)=f(x2)=0矛盾.所以假设不成立.

…(12分)故原命题成立.…(14分)8.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.9.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12答案:抛物线y2=8x的准线为x=-2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B10.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C11.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()

A.必在圆x2+y2=2内

B.必在圆x2+y2=2上

C.必在圆x2+y2=2外

D.以上三种情形都有可能答案:A12.在某项体育比赛中,七位裁判为一选手打出的分数如下:

90

89

90

95

93

94

93

去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B13.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B14.已知x∈R,i为虚数单位,若(x-2)i-1-i为纯虚数,则x的值为()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]•i-i•i=(x-2)i2-i=(2-x)-i由纯虚数的定义可得2-x=0,故x=2故选C15.如果关于x的不等式组有解,那么实数a的取值范围(

A.(-∞,-3)∪(1,+∞)

B.(-∞,-1)∪(3,+∞)

C.(-1,3)

D.(-3,1)答案:C16.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.17.为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()

A.300B.350C.420D.450答案:∵由图得,∴70.5公斤以上的人数的频率为:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人数为2000×0.181=362,故选B18.如果:在10进制中2004=4×100+0×101+0×102+2×103,那么类比:在5进制中数码2004折合成十进制为()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故选B.19.两不重合直线l1和l2的方向向量分别为答案:∵直线l1和l2的方向向量分别为20.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是()

A.有99%的人认为该栏目优秀

B.有99%的人认为该栏目是否优秀与改革有关系

C.有99%的把握认为电视栏目是否优秀与改革有关系

D.没有理由认为电视栏目是否优秀与改革有关系答案:D21.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20322.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25623.点P(,)与圆x2+y2=1的位置关系是()

A.在圆内

B.在圆外

C.在圆上

D.与t有关答案:C24.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()

A.有理数、零、整数

B.有理数、整数、零

C.零、有理数、整数

D.整数、有理数、零

答案:B25.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.26.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()

A.3

B.

C.

D.

答案:D27.已知,求证:答案:证明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.28.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B29.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:230.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.31.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.

答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.32.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).33.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线右支C.一条射线D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根据双曲线的定义,∴点P是以M(-2,0),N(2,0)为两焦点的双曲线的右支.故选B.34.画出《数学3》第一章“算法初步”的知识结构图.答案:《数学3》第一章“算法初步”的知识包括:算法、程序框图、算法的三种基本逻辑结构和框图表示、基本算法语句.算法的三种基本逻辑结构和框图表示就是顺序结构、条件结构、循环结构,基本算法语句是指输入语句、输出语句、赋值语句、条件语句和循环语句.故《数学3》第一章“算法初步”的知识结构图示意图如下:35.已知x,y之间的一组数据:

x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C36.已知正方形ABCD的边长为a,则|AC+AD|等于______.答案:∵正方形ABCD的边长为a,∴AC=2a,AC与AD的夹角为45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故为:5a37.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4

096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C38.下面为一个求20个数的平均数的程序,在横线上应填充的语句为()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A39.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则当x=1时,y=4;当x=2时,y=7;当x=3时,y=10;当x=k时,y=3k+1;又由a∈N*,∴a4≠10,则a2+3a=10,a4=3k+1解得a=2,k=5故为:2,540.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.41.方程ax2+2x+1=0至少有一个负的实根的充要条件是()

A.0<a≤1

B.a<1

C.a≤1

D.0<a≤1或a<0答案:C42.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.

(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈

(32

3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;

(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈

(32

3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈

(32

3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)43.直线和圆交于两点,则的中点

坐标为(

)A.B.C.D.答案:D解析:,得,中点为44.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()

A.简单随机抽样

B.系统抽样

C.分层抽样

D.其它抽样方法答案:B45.在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为

______.答案:由题意设C(0,0,z),∵C与点A(-4,1,7)和点B(3,5,-2)等距离,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C点的坐标是(0,0,149)故为:(0,0,149)46.已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3取等号,此时y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故为:37.47.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.48.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C49.函数f(x)=log2(3x+1)的值域为()

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.解析:试题分析50.已知随机变量ξ~N(3,22),若ξ=2η+3,则Dη=()

A.0

B.1

C.2

D.4答案:B第2卷一.综合题(共50题)1.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.2.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.

在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.

B.

C.

D.

答案:由题意可知:由于怕迟到,所以一开始就跑步,所以刚开始离学校的距离随时间的推移应该相对较快.而等跑累了再走余下的路程,则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:故选B.3.运用三段论推理:

复数不可以比较大小,(大前提)

2010和2011都是复数,(小前提)

2010和2011不可以比较大小.(结

论)

该推理是错误的,产生错误的原因是______错误.(填“大前提”或“小前提”)答案:根据三段论推理,是由两个前提和一个结论组成,大前提:复数不可以比较大小,是错误的,该推理是错误的,产生错误的原因是大前提错误.故为:大前提4.将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.将一枚质地均匀的硬币连续投掷4次,出现“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.5.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C6.选修4-4参数方程与极坐标

在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.答案:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由题设得x0=4cosθy0=3sinθ(θ为参数,θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以

-73≤2x0-y0≤73.7.关于如图所示几何体的正确说法为______.

①这是一个六面体;

②这是一个四棱台;

③这是一个四棱柱;

④这是一个四棱柱和三棱柱的组合体;

⑤这是一个被截去一个三棱柱的四棱柱.答案:①因为有六个面,属于六面体的范围,②这是一个很明显的四棱柱,因为侧棱的延长线不能交与一点,所以不正确.③如果把几何体放倒就会发现是一个四棱柱,④可以有四棱柱和三棱柱组成,⑤和④的想法一样,割补方法就可以得到.故为:①③④⑤.8.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C9.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.10.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是______.答案:当a>0时,方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1当a≤0时函数f(x)=2ax2-x-1在(0,1)内恰无解.故为:a>111.已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根据题意画出图形,如图所示:可得曲线|x|+|y|=4表示边长为42的正方形,如图ABCD为正方形,x2+y2=r2表示以原点为圆心的圆,过O作OE⊥AB,∵边AB所在直线的方程为x+y=4,∴|OE|=42=22,则满足题意的r的范围是0<r<22.故选A12.已知集合A={0,1,2},集合B={x|x=2a,a∈A},则A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故选C13.选做题

已知抛物线,过原点O直线与交于两点。

(1)求的最小值;

(2)求的值答案:解:设直线的参数方程为与抛物线方程

联立得14.圆x2+y2-4x=0在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D15.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D16.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:1317.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.18.两个样本甲和乙,其中=10,=10,=0.055,=0.015,那么样本甲比样本乙波动()

A.大

B.相等

C.小

D.无法确定答案:A19.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.20.已知x与y之间的一组数据是()

x0123y2468则y与x的线性回归方程y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根据所给的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴这组数据的样本中心点是(1.5,5)∵线性回归直线一定过样本中心点,∴y与x的线性回归方程y=bx+a必过点(1.5,5)故选D.21.已知m2+n2=1,a2+b2=2,则am+bn的最大值是()

A.1

B.

C.

D.以上都不对答案:C22.若a为实数,,则a等于()

A.

B.-

C.2

D.-2答案:B23.已知x,y的取值如下表:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).24.已知抛物线C的参数方程为x=8t2y=8t(t为参数),设抛物线C的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=______.答案:把抛物线C的参数方程x=8t2y=8t(t为参数),消去参数化为普通方程为y2=8x.故焦点F(2,0),准线方程为x=-2,再由直线FA的斜率是-3,可得直线FA的倾斜角为120°,设准线和x轴的交点为M,则∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF•tan60°=43,故点A(0,43),把y=43代入抛物线求得x=6,∴点P(6,43),故|PF|=(6-2)2+(43-0)2=8,故为8.25.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()

A.小前提错

B.结论错

C.正确的

D.大前提错答案:C26.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B27.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C28.在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,则AE=______.(用a、b表示)答案:∵平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故为:34a+14b.29.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。30.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D31.若两直线l1,l2的倾斜角分别为α1,α2,则下列四个命题中正确的是()

A.若α1<α2,则两直线斜率k1<k2

B.若α1=α2,则两直线斜率k1=k2

C.若两直线斜率k1<k2,则α1<α2

D.若两直线斜率k1=k2,则α1=α2答案:D32.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B33.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.34.平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c是否为双曲线?答案:由题意,设两定点间的距离为2c,则2a<2c时,轨迹为双曲线的一支2a=2c时,轨迹为一条射线2a>2c时,无轨迹.35.若f(x)=x2,则对任意实数x1,x2,下列不等式总成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A36.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21237.x2+(m-3)x+m=0

一个根大于1,一个根小于1,m的范围是______.答案:设f(x)=x2+(m-3)x+m,则∵x2+(m-3)x+m=0一个根大于1,一个根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故为m<1.38.在极坐标系中,曲线ρ=4cosθ围成的图形面积为()

A.π

B.4

C.4π

D.16答案:C39.如图,在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比S平行四边形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,∵得AP=27AB+47AC,∴S平行四边形ANPMS平行四边形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;40.若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真D.不能判断q的真假答案:因为“?p”为假,所以p为真;又因为“p∧q”为假,所以q为假.对于A,p或q为真,对于C,D,显然错,故选B.41.空间向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,则y+z=______.答案:∵n⊥a,n⊥b,∴n•a=0n•b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故为3.42.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.43.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()

A.甲科总体的标准差最小

B.丙科总体的平均数最小

C.乙科总体的标准差及平均数都居中

D.甲、乙、丙的总体的平均数不相同

答案:A44.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:45.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.46.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C47.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:448.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.49.平面向量的夹角为,则等于(

A.

B.3

C.7

D.79答案:A50.两平行直线x+3y-4=0与2x+6y-9=0的距离是

______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:1020第3卷一.综合题(共50题)1.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.2.随机变量ξ的分布列为k=1、2、3、4,c为常数,则P(<ξ<)的值为()

A.

B.

C.

D.答案:B3.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个D.1个答案:命题“若a>b,则ac2>bc2”为假命题;其逆命题为“若ac2>bc2,则a>b”为真命题;其否命题为“若a≤b,则ac2≤bc2”为真命题;其逆否命题为“若ac2≤bc2,则a≤b”为假命题;故选C4.设α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,当m为何值时,α2+β2有最小值?并求出这个最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根则△=16m2-16(m+2)≥0,即m≤-1,或m≥2则α+β=m,α×β=m+24,则α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴当m=-1时,α2+β2有最小值,最小值是12.5.某自动化仪表公司组织结构如图所示,其中采购部的直接领导是()

A.副总经理(甲)

B.副总经理(乙)

C.总经理

D.董事会

答案:B6.比较大小:a=0.20.5,b=0.50.2,则()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A7.运用三段论推理:

复数不可以比较大小,(大前提)

2010和2011都是复数,(小前提)

2010和2011不可以比较大小.(结

论)

该推理是错误的,产生错误的原因是______错误.(填“大前提”或“小前提”)答案:根据三段论推理,是由两个前提和一个结论组成,大前提:复数不可以比较大小,是错误的,该推理是错误的,产生错误的原因是大前提错误.故为:大前提8.已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根据题意画出图形,如图所示:可得曲线|x|+|y|=4表示边长为42的正方形,如图ABCD为正方形,x2+y2=r2表示以原点为圆心的圆,过O作OE⊥AB,∵边AB所在直线的方程为x+y=4,∴|OE|=42=22,则满足题意的r的范围是0<r<22.故选A9.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:

成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.10.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|

|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.11.已知x,y之间的一组数据:

x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C12.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是

)A.B.C.D.答案:B解析:略13.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.14.用黄金分割法寻找最佳点,试验区间为[1000,2000],若第一个二个试点为好点,则第三个试点应选在(

)。答案:123615.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()

A.3

B.-2

C.2

D.不存在答案:B16.(每题6分共12分)解不等式

(1)(2)答案:(1)(2)解析:本试题主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解运用。(1)移向,通分,合并,将分式化为整式,然后得到解集。(2)首先分析函数式有意义的x的取值,然后保证两边都有意义的时候,且都为正,两边平方求解得到。解:(2)当8-x<0显然成立。当8-x》0时,则两边平方可得。所以17.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:218.直线y=k(x-2)+3必过定点,该定点的坐标为()

A.(3,2)

B.(2,3)

C.(2,-3)

D.(-2,3)答案:B19.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(

).答案:3.5kΩ20.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③21.以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦长为8,所以半径是5所求圆的方程是:x2+y2=25故选D.22.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.23.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.24.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且

y=0.95x+

a,则

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.25.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:126.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2010的坐标为______.答案:A=1011,B=20AA=1011

1011

=1021A3=111

121

=1031依此类推A2009=1020101∴A2009B=1020101

20=24018∴OP2010的坐标为(2,4018)故为:(2,4018)27.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()

A.30°

B.45°

C.60°

D.90°答案:C28.3i(1+i)2的虚部等于______.答案:3i(1+i)2=2,所以其虚部等于0,故为029.对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”现有四个函数:

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“稳定区间”的函数有()A.①②B.②③C.③④D.②④答案:①对于函数f(x)=ex若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.②对于f(x)=x3存在“稳定区间”,如x∈[0,1]时,f(x)=x3∈[0,1].③对于f(x)=sinπ2x,存在“稳定区间”,如x∈[0,1]时,f(x)=sinπ2x∈[0,1].④对于f(x)=lnx,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna=a,且lnb=b,即方程lnx=x有两个解,即y=lnx

和y=x的图象有两个交点,这与y=lnx和y=x的图象没有公共点相矛盾,故④不存在“稳定区间”.故选B.30.点P(,)与圆x2+y2=1的位置关系是()

A.在圆内

B.在圆外

C.在圆上

D.与t有关答案:C31.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:171.8或148.232.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B33.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(

A.3

B.2

C.-1

D.0答案:A34.已知某离散型随机变量ξ的数学期望Eξ=76,ξ的分布列如下,则a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故为:1335.函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为

______.答案:∵y=ax与y=loga(x+1)具有相同的单调性.∴f(x)=ax+loga(x+1)在[0,1]上单调,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=12故为:1236.直线(t为参数)的倾斜角是(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论