版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年贵州工业职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.2.如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为______.答案:连BD,则∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故为:13.某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐标系并写出该双曲线方程;
(Ⅱ)求冷却塔的容积(精确到10m3,塔壁厚度不计,π取3.14).答案:(I)如图建立直角坐标系xOy,AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.设双曲线方程为x2a2-y2b2=1(a>0,b>0),则a=12AA′=7.又设B(11,y1),C(9,y2),因为点B、C在双曲线上,所以有11272-y21b2=1,①9272-y22b2=1,②由题意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故双曲线方程为x249-y298=1;(II)由双曲线方程得x2=12y2+49.设冷却塔的容积为V(m3),则V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷却塔的容积为4.25×103(m3).4.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9答案:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B5.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D6.过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是______.答案:∵圆x2+y2=4的圆心是O(0,0),半径r=2,点(0,2)到圆心O(0,0)的距离是d=0+4=2=r,∴点(0,2)在圆x2+y2=4上,∴过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是0x+2y=4,即y=2.故为:y=2.7.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:328.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()
A.
B.
C.2
D.答案:B9.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.10.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是______元.答案:设每台彩电原价是x元,由题意可得(1+40%)x•0.8-x=144,解得x=1200,故为1200.11.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A12.直线2x+y-3=0与直线3x+9y+1=0的夹角是()
A.
B.arctan2
C.
D.答案:C13.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=114.已知点M在z轴上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,则点M的坐标是
______.答案:∵点M在z轴上,∴设点M的坐标为(0,0,z)又|MA|=|MB|,由空间两点间的距离公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故点M的坐标是(0,0,-3).故为:(0,0,-3).15.下面程序运行后,输出的值是()
A.42
B.43
C.44
D.45
答案:C16.一个样本a,99,b,101,c中五个数恰成等差数列,则这个样本的极差与标准差分别为(
)。答案:4;17.函数f(x)=2|log2x|的图象大致是()
A.
B.
C.
D.
答案:C18.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.3D.2答案:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.19.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.20.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.21.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足条件|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线右支,得c=5,2a=6,∴a=3,∴b2=16,故动点P的轨迹方程是x29-y216=1(x≥3).故选D.22.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为()
A.
B.
C.
D.答案:D23.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C24.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.25.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.26.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D27.已知在△ABC和点M满足
MA+MB+MC=0,若存在实数m使得AB+AC=mAM成立,则m=______.答案:由点M满足MA+MB+MC=0,知点M为△ABC的重心,设点D为底边BC的中点,则AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故为:328.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.
答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.29.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).30.函数f(x)=ex(e为自然对数的底数)对任意实数x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A31.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C32.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.33.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.34.已知函数f(x)=x2+2,x≥13x,x<1,则f(f(0))=()A.4B.3C.9D.11答案:因为f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故选B.35.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°36.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是______.答案:依题意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故为:h1?cotθ1+h2?cotθ2≤2a37.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.38.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)设全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集为:,{﹣5},{},{﹣5,}.39.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.40.如果消息M发生的概率为P(M),那么消息M所含的信息量为I(M)=log2[P(M)+],若小明在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消费中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C41.在甲、乙两个盒子里分别装有标号为1、2、3、4的四个小球,现从甲、乙两个盒子里各取出1个小球,每个小球被取出的可能性相等.
(1)求取出的两个小球上标号为相邻整数的概率;
(2)求取出的两个小球上标号之和能被3整除的概率;
(3)求取出的两个小球上标号之和大于5整除的概率.答案:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)总数为16种.(1)其中取出的两个小球上标号为相邻整数的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种故取出的两个小球上标号为相邻整数的概率P=38;(2)其中取出的两个小球上标号之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5种故取出的两个小球上标号之和能被3整除的概率为516;(3)其中取出的两个小球上标号之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种故取出的两个小球上标号之和大于5的概率P=3842.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D43.向量化简后等于()
A.
B.
C.
D.答案:C44.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.45.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.46.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故为C911(38)10(58)247.复数Z=arccosx-π+(-2x)i(x∈R,i是虚数单位),在复平面上的对应点只可能位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴复数Z对应的点的实部和虚部都小于零,∴复数在第三象限,故选C.48.已知a=4,b=1,焦点在x轴上的椭圆方程是(
)
A.
B.
C.
D.答案:C49.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*
都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*
都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.50.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.第2卷一.综合题(共50题)1.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()
A.
B.
C.
D.答案:C2.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(
)
A.
B.
C.
D.答案:A3.设P1(4,-3),P2(-2,6),且P在P1P2的延长线上,使||=2||,则点P的坐标
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A4.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C5.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)6.下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;
②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;
③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.
其中说法正确的个数为()
A.0个
B.1个
C.2个
D.3个答案:C7.利用斜二测画法能得到的()
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A8.把的图象按向量平移得到的图象,则可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的图象,需将的图象向右平移个单位长度,故选D。9.下列关于结构图的说法不正确的是()
A.结构图中各要素之间通常表现为概念上的从属关系和逻辑上的先后关系
B.结构图都是“树形”结构
C.简洁的结构图能更好地反映主体要素之间关系和系统的整体特点
D.复杂的结构图能更详细地反映系统中各细节要素及其关系答案:B10.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上答案:C11.下列命题:
①垂直于同一直线的两直线平行;
②垂直于同一直线的两平面平行;
③垂直于同一平面的两直线平行;
④垂直于同一平面的两平面平行;
其中正确的有()
A.③④
B.①②④
C.②③
D.②③④答案:C12.从点A(2,-1,7)沿向量=(8,9,-12)的方向取线段长||=34,则B点坐标为()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B13.不等式﹣2x+1>0的解集是(
).答案:{x|x<}14.如果命题P:∅∈{∅},命题Q:∅⊂{∅},那么下列结论不正确的是()A.“P或Q”为真B.“P且Q”为假C.“非P”为假D.“非Q”为假答案:命题P:∅∈{∅},命题Q:∅⊂{∅},可直接看出命题Q,命题P都是正确的.故“P或Q”为真.“P且Q”为真.“非P”为假.“非Q”为假.故选B.15.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D16.在画两个变量的散点图时,下面哪个叙述是正确的()
A.预报变量x轴上,解释变量y轴上
B.解释变量x轴上,预报变量y轴上
C.可以选择两个变量中任意一个变量x轴上
D.可以选择两个变量中任意一个变量y轴上答案:B17.已知,,且与垂直,则实数λ的值为()
A.±
B.1
C.-
D.答案:D18.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,3219.复数1+i(i为虚数单位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故选A.20.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D21.若矩阵A=是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B22.直线x3+y4=1与x,y轴所围成的三角形的周长等于()A.6B.12C.24D.60答案:直线x3+y4=1与两坐标轴交于A(3,0),B(0,4),∴AB=5,∴△AOB的周长为:OA+OB+AB=3+4+5=12,故选B.23.甲、乙两人共同投掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积3分者获胜,并结束游戏.
①求在前3次投掷中甲得2分,乙得1分的概率.
②设ξ表示到游戏结束时乙的得分,求ξ的分布列以及期望.答案:(1)由题意知本题是一个古典概型试验发生的事件是掷一枚硬币3次,出现的所有可能情况共有以下8种.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情况有以下3种,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值为:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列为:∴Eξ=1×316+2×316+3×12=331624.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C25.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()
A.2
B.4
C.6
D.7
答案:D26.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:227.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).28.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B29.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.30.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B31.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D32.四面体ABCD中,设M是CD的中点,则化简的结果是()
A.
B.
C.
D.答案:A33.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两种果树至少有一种成苗的概率为;(2).恰好有一种果树培育成苗且移栽成活的概率为.解析:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,,,,,.(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,.恰好有一种果树培育成苗且移栽成活的概率为.解法二:恰好有一种果树栽培成活的概率为.34.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:
①计算c=a2+b2;
②输入直角三角形两直角边长a,b的值;
③输出斜边长c的值;
其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③答案:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=a2+b2,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.35.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是(
)。答案:436.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D37.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C38.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)39.若将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,则它的小前提是______.答案:将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,因为四边形的内角和为360°,平行四边形是四边形,所以平行四边形的内角和为360°大前提:四边形的内角和为360°;小前提:平行四边形是四边形;结论:平行四边形的内角和为360°.故为:平行四边形是四边形.40.用反证法证明:“a>b”,应假设为()
A.a>b
B.a<b
C.a=b
D.a≤b答案:D41.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:16542.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-343.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:344.某自动化仪表公司组织结构如图所示,其中采购部的直接领导是()
A.副总经理(甲)
B.副总经理(乙)
C.总经理
D.董事会
答案:B45.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D46.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()
A.
B.
C.
D.
答案:B47.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D48.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(
)
A.
B.
C.3
D.2答案:C49.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有1个白球;都是白球
B.至少有1个白球;至少有1个红球
C.恰有1个白球;恰有2个白球
D.至少有一个白球;都是红球答案:C50.点(1,2)到直线x+2y+5=0的距离为______.答案:点(1,2)到直线x+2y+5=0的距离为d=|1+2×2+5|12+22=25故为:25第3卷一.综合题(共50题)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A2.如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为______.答案:|x-4|-|x+5|的几何意义就是数轴上的点到4的距离与到-5的距离的差,差的最大值为9,如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为b>9;故为:b>9.3.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+14.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.35.已知向量,满足:||=3,||=5,且=λ,则实数λ=()
A.
B.
C.±
D.±答案:C6.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D7.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A8.设z∈C,|z|≤2,则点Z表示的图形是()A.直线x=2的左半平面B.半径为2的圆面C.直线x=2的右半平面D.半径为2的圆答案:由题意z∈C,|z|≤2,由得数的几何意义知,点Z表示的图形是半径为2的圆面,故选B9.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如下图所示,则
A、以上四个图形都是正确的
B、只有(2)(4)是正确的
C、只有(4)是错误的
D、只有(1)(2)是正确的答案:C10.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC
的比为ABBC=|AB||BC|=12,故为12.11.点M的直角坐标是,则点M的极坐标为()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C12.已知f(x)=,a≠b,
求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.13.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.14.已知a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),且过点(1,2),O为原点.求△OAB面积的最小值.答案:∵a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),∴直线l的方程为xa+yb=1,又直线l过点(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面积为:12ab≥12×8=4,当且仅当1a=2b=12,即a=2且b=4时,等号成立.故△OAB面积的最小值是4.15.已知a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴当且仅当t=15时,5t2-2t+2的最小值为95所以当t=15时,|b-a|的最小值是95=355故为:35516.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()
A.24
B.48
C.144
D.288答案:C17.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:2018.不等式3≤|5-2x|<9的解集为()
A.[-2,1)∪[4,7)
B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7)
D.(-2,1]∪[4,7)答案:D19.设集合A={1,2,3,4},集合B={1,3,5,7},则集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故选B.20.设
是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D21.已知A(1,1),B(2,4),则直线AB的斜率为()
A.1
B.2
C.3
D.4答案:C22.函数f(x)=2|log2x|的图象大致是()
A.
B.
C.
D.
答案:C23.如图,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形内挖去半圆(圆心O在边AC上,半圆与BC、AB相切于点C、M,与AC交于N,见图中非阴影部分),则该半圆的半径长为______.答案:连接OM,则OM⊥AB.设⊙O的半径OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故为33.24.已知复数z的模为1,且复数z的实部为13,则复数z的虚部为______.答案:设复数的虚部是b,∵复数z的模为1,且复数z的实部为13,∴(13)2+b2=1,∴b2=89,∴b=±223故为:±22325.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.26.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).27.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.28.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.29.下列有关相关指数R2的说法正确的有()
A.R2的值越大,说明残差平方和越小
B.R2越接近1,表示回归效果越差
C.R2的值越小,说明残差平方和越小
D.如果某数据可能采取几种不同回归方程进行回归分析,一般选择R2小的模型作为这组数据的模型答案:A30.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A31.平面向量a与b的夹角为60°,a=(2,0),|b|=1
则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1
∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.32.(几何证明选讲选做题)如图,梯形,,是对角线和的交点,,则
。
答案:1:6解析:,
,,∵,,而∴。33.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2
,
π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2
,
π6)到直线ρsinθ=2的距离1,故为:1.34.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C35.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.36.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版饮用水合同协议书3篇
- 常年性劳务代理协议3篇
- 工程培训设计与施工合同3篇
- 教育培训策划导游劳动合同样本3篇
- 电商运营人员聘用合同书
- 演播室隔音墙施工协议
- 装修合同施工范本
- 矿井排水防涝系统拉管施工合同
- 设备购买协议解除协议
- 印刷行业会计招聘协议样本
- 数学文化欣赏
- 脊柱区1教学讲解课件
- KK5-冷切锯操作手册-20151124
- 国际金融课后习题答案(吴志明第五版)第1-9章
- 《基于杜邦分析法周大福珠宝企业盈利能力分析报告(6400字)》
- 全国英语等级考试三级全真模拟试题二-2023修改整理
- 02R112 拱顶油罐图集
- GB/T 25344-2010中华人民共和国铁路线路名称代码
- GB/T 1885-1998石油计量表
- GB/T 13793-2016直缝电焊钢管
- 积分系统-详细设计说明书-v1.1
评论
0/150
提交评论