




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年淮南职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.2.若直线的参数方程为,则直线的斜率为(
)A.B.C.D.答案:D3.
点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()
A.(3,8)
B.(1,3)
C.(3,1)
D.(-3,-1)答案:C4.已知大于1的正数x,y,z满足x+y+z=33.
(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.5.求证:答案:证明见解析解析:证:∴6.当x∈N+时,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.7.关于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B8.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].9.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()
A.1
B.2
C.3
D.0答案:B10.已知向量,,若与共线,则的值为
A
B
C
D
答案:D解析:,,由,得11.设a,b,c是三个不共面的向量,现在从①a+b;②a-b;③a+c;④b+c;⑤a+b+c中选出使其与a,b构成空间的一个基底,则可以选择的向量为______.答案:构成基底只要三向量不共面即可,这里只要含有向量c即可,故③④⑤都是可以选择的.故为:③④⑤(不唯一,也可以有其它的选择)12.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()
A.
B.
C.
D.答案:D13.已知函数f(x)=2x,x≤1log13x,x>1,若f(a)=2,则a=______.答案:当a≤1时y=2x∴2a=2∴a=1当a>1时y=log13x∴2=loga13∴a=19不成立所以a=1故为:114.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.15.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的答案:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故选C.16.(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线的延长线交它的外接圆于点.
(Ⅰ)证明:;
(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.17.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A18.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为
______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).19.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.20.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()
A.(1)的假设错误,(2)的假设正确
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)与(2)的假设都错误答案:A21.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.
x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:322.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.23.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).24.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:625.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0
(1)证明:1a是f(x)的一个根;(2)试比较1a与c的大小.答案:证明:(1)∵f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,f(x)=0的两个根x1,x2满足x1x2=ca,又f(c)=0,不妨设x1=c∴x2=1a,即1a是f(x)=0的一个根.(2)假设1a<c,又1a>0由0<x<c时,f(x)>0,得f(1a)>0,与f(1a)=0矛盾∴1a≥c又:f(x)=0的两个根不相等∴1a≠c,只有1a>c26.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°27.附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设AD=λAB,异面直线AC1与CD所成角的余弦值为925,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分别为x,y,z轴建立如图所示空间直角坐标,因为AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因为AD=λAB,所以点D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因为异面直线AC1与CD所成角的余弦值为925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因为
D是AB的中点,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),设平面DB1C的一个法向量n2=(x0,y0,z0),则n1,n2的夹角(或其补角)的大小就是二面角D-CB1-B的大小,由n2•CD=0n2•CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,则y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1•n2|n1|•|n2|=434=23417.所以二面角D-B1C-B的余弦值为23417.
…(10分)28.已知x,y的取值如下表所示:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.529.数据a1,a2,a3,…,an的方差为σ2,则数据2a1+3,2a2+3,2a3+3,…,2an+3的方差为______.答案:∵数据a1,a2,a3,…,an的方差为σ2,∴数据2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故为:4σ2.30.(每题6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本试题主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解运用。(1)移向,通分,合并,将分式化为整式,然后得到解集。(2)首先分析函数式有意义的x的取值,然后保证两边都有意义的时候,且都为正,两边平方求解得到。解:(2)当8-x<0显然成立。当8-x》0时,则两边平方可得。所以31.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()
A.
B.
C.
D.答案:D32.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.33.已知三角形ABC的顶点坐标为A(0,3)、B(-2,-1)、C(4,3),M是BC边上的中点。
(1)求AB边所在的直线方程。
(2)求中线AM的长。
(3)求点C关于直线AB对称点的坐标。答案:解:(1)由两点式得AB边所在的直线方程为:=即2x-y+3=0(2)由中点坐标公式得M(1,1)∴|AM|==(3)设C点关于直线AB的对称点为C′(x′,y′)则CC′⊥AB且线段CC′的中点在直线AB上。即解之得x′=
y′=C′点坐标为(,)34.已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=______.答案:连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故为:∠DBE=55°.35.设a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a•c|a|
|c|=-5-22•29=-75858,∴c在a方向上的投影为|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.36.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.37.用反证法证明:“a>b”,应假设为()
A.a>b
B.a<b
C.a=b
D.a≤b答案:D38.2008年9月25日下午4点30分,“神舟七号”载人飞船发射升空,其运行的轨道是以地球的中心F为一个焦点的椭圆,若这个椭圆的长轴长为2a,离心率为e,则“神舟七号”飞船到地球中心的最大距离为______.答案:如图,根据椭圆的几何性质可知,顶点B到椭圆的焦点F的距离最大.最大为a+c=a+ae.故为:a+ae.39.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)40.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()
A.a,b,c都是奇数
B.a,b,c都是偶数
C.a,b,c中至少有两个偶数
D.a,b,c中至少有两个偶数或都是奇数答案:D41.如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D-xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)证明:设AC∩BD=E,连接D1、E,则有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB⊄平面D1AC,D1E⊂平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),设n=(x,y,z)为平面AB1D1的法向量,n•B1D1=x+y=0,n•D1A=2x-2z=0.于是令x=1,则y=-1,z=1.则n=(1,-1,1)…(8分)同理可以求得平面D1AC的一个法向量m=(1,1,1),…(10分)cos<m,n>=m•n|m||n|=13.∴二面角B1-AD1-C的余弦值为13.…(12分)42.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()
A.互斥事件
B.独立事件
C.对立事件
D.不相互独立事件答案:B43.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:544.设随机事件A、B,P(A)=35,P(B|A)=12,则P(AB)=______.答案:由条件概率的计算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故为310.45.根据学过的知识,试把“推理与证明”这一章的知识结构图画出来.答案:根据“推理与证明”这一章的知识可得结构图,如图所示.46.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1547.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.48.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(
)。答案:(2.5,2.5)49.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.50.集合A={3,2a},B={a,b},若A∩B={2},则A∪B=______.答案:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故为{1,2,3}.第2卷一.综合题(共50题)1.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.2.a、b、c∈R,则下列命题为真命题的是______.
①若a>b,则ac2>bc2
②若ac2>bc2,则a>b
③若a<b<0,则a2>ab>b2
④若a<b<0,则1a<1b.答案:当c=0时,ac2=bc2,故①不成立;若ac2>bc2,则c2≠0,即c2>0,则a>b,故②成立;若a<b<0,则a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,则ab>0,故aab<bab,即1a>1b,故④不成立故②③为真命题故为:②③3.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.4.若a<b<c,x<y<z,则下列各式中值最大的一个是()
A.ax+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.ax+by+cz答案:D5.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.6.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:727.已知直线l过点P(1,0,-1),平行于向量=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D8.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)
建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.9.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.10.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。
答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。11.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.12.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.13.选修4-2:矩阵与变换
已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为α1=11,属于特征值1的一个特征向量为α2=3-2.求矩阵A的逆矩阵.答案:由矩阵A属于特征值6的一个特征向量为α1=11,可得33cd11=611,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩阵是23-12-1312.14.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.15.一只袋中装有2个白球、3个红球,这些球除颜色外都相同.
(Ⅰ)从袋中任意摸出1个球,求摸到的球是白球的概率;
(Ⅱ)从袋中任意摸出2个球,求摸出的两个球都是白球的概率;
(Ⅲ)从袋中任意摸出2个球,求摸出的两个球颜色不同的概率.答案:(Ⅰ)从5个球中摸出1个球,共有5种结果,其中是白球的有2种,所以从袋中任意摸出1个球,摸到白球的概率为25.
…(4分)(Ⅱ)从袋中任意摸出2个球,共有C25=10种情况,其中全是白球的有1种,故从袋中任意摸出2个球,摸出的两个球都是白球的概率为110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的两个球颜色不同的情况共有2×3=6种,故从袋中任意摸出2个球,摸出的2个球颜色不同的概率为610=35.
…(14分)16.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.17.在极坐标系中,圆ρ=2cosθ与方程θ=(ρ>0)所表示的图形的交点的极坐标是(
)
A.(1,1)
B.(1,)
C.(,)
D.(,)答案:C18.设直线y=kx与椭圆x24+y23=1相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A.±32B.±23C.±12D.±2答案:将直线与椭圆方程联立,y=kxx24+y23=1,化简整理得(3+4k2)x2=12(*)因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,故方程的两个根为±1.代入方程(*),得k=±32故选A.19.将程序补充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶数”
ELSE
PRINT“x是奇数”
END
IF
END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=020.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()
A.2+
B.
C.
D.1+答案:A21.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:422.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.23.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B24.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()
A.
B.
C.
D.答案:D25.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C26.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(
)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B27.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|
|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.28.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:
907966191925271932812458569683
431257393027556488730113537989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(
)。答案:0.2529.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(
)答案:B30.已知|OA|=1,|OB|=3,OA•OB=0,点C在∠AOB内,且∠AOC=30°,设OC=mOA+nOB(m、n∈R),则mn等于______.答案:∵|OA|=1,|OB|=3,OA•OB=0,OA⊥OBOC•OB=OC×3cos60°=32OC=3×12
|OC
|OC•OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x轴方向上的分量为12|OC|OC在y轴方向上的分量为32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m两式相比可得:mn=3.故为:331.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.
B.
C.
D.
答案:B32.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20333.下面四个结论:
①偶函数的图象一定与y轴相交;
②奇函数的图象一定通过原点;
③偶函数的图象关于y轴对称;
④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),
其中正确命题的个数是()A.1B.2C.3D.4答案:偶函数的图象关于y轴对称,但不一定与y轴相交,因此①错误,③正确;奇函数的图象关于原点对称,但不一定经过原点,只有在原点处有定义才通过原点,因此②错误;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,只要定义域关于原点对称即可,因此④错误.故选A.34.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.35.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或13236.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.37.已知点O为△ABC外接圆的圆心,且有,则△ABC的内角A等于()
A.30°
B.60°
C.90°
D.120°答案:A38.已知圆C:x2+y2-4x-5=0.
(1)过点(5,1)作圆C的切线,求切线的方程;
(2)若圆C的弦AB的中点P(3,1),求AB所在直线方程.答案:由C:x2+y2-4x-5=0得圆的标准方程为(x-2)2+y2=9-----------(2分)(1)显然x=5为圆的切线.------------------------(4分)另一方面,设过(5,1)的圆的切线方程为y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切线方程为4x+3y-23=0和x=5.------------------------(7分)(2)设所求直线与圆交于A,B两点,其坐标分别为(x1,y1)B(x2,y2)则有(x1-2)2+y21=9(x2-2)2+y22=9两式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因为圆C的弦AB的中点P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以y2-y1x2-x1=-1,故所求直线方程为
x+y-4=0-----------------(14分)39.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C40.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A41.在平面直角坐标系下,曲线C1:x=2t+2ay=-t(t为参数),曲线C2:x2+(y-2)2=4.若曲线C1、C2有公共点,则实数a的取值范围
______.答案:∵曲线C1:x=2t+2ay=-t(t为参数),∴x+2y-2a=0,∵曲线C2:x2+(y-2)2=4,圆心为(0,2),∵曲线C1、C2有公共点,∴圆心到直线x+2y-2a=0距离小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故为2-5≤a≤2+5.42.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).43.从一批羽毛球产品中任取一个,质量小于4.8
g的概率是0.3,质量不小于4.85
g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B44.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).
(Ⅰ)求月收入在[3000,3500)内的被调查人数;
(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240045.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A46.将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.答案:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是47.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2
012”时,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要条件.故选A.48.设随机变量X~B(10,0.8),则D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C49.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)50.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=1第3卷一.综合题(共50题)1.求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.答案:证明:假设函数y=f(x)的图象与x轴有两个交点…(2分)设交点的横坐标分别为x1,x2,且x1<x2.因为函数y=f(x)在实数集上单调递减所以f(x1)>f(x2),…(6分)这与f(x1)=f(x2)=0矛盾.所以假设不成立.
…(12分)故原命题成立.…(14分)2.判断下列各组中的两个函数是同一函数的为()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定义域:{x|x≠0},g(x)的定义域为R,故A错误;B、f(x)=x0=1,g(x)=1,定义域都为{x|x≠1},故B正确;C、∵f(x)=x2=|x|,g(x)=x,解析式不一样,故C错误;D、∵f(x)=|x|,g(x)=x,f(x)的定义域为R,g(x)的定义域为:{x|x≥0},故D错误;故选B.3.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B4.已知点M(1,2),N(1,1),则直线MN的倾斜角是()A.90°B.45°C.135°D.不存在答案:∵点M(1,2),N(1,1),则直线MN的斜率不存在,故直线MN的倾斜角是90°,故选A.5.利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()
A.
B.
C.
D.1答案:A6.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x7.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.8.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()
A.
B.2
C.
D.答案:C9.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.10.如果关于x的不等式组有解,那么实数a的取值范围(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C11.已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.答案:设M=abcd,则abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)12.抽样调查在抽取调查对象时()A.按一定的方法抽取B.随意抽取C.全部抽取D.根据个人的爱好抽取答案:一般地,抽样方法分为3种:简单随机抽样、分层抽样和系统抽样无论是哪种抽样方法,都遵循机会均等的原理,即在抽样过程中,各个体被抽到的概率是相等的.根据以上分析,可知只有A项符合题意.故选:A13.若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.答案:①当a=0时,||PF1|-|PF2||=0,从而|PF1|=|PF2|,所以点P的轨迹为直线:线段F1F2的垂直平分线.②当a=2时,||PF1|-|PF2||=2=|F1F2|,所以点P的轨迹为两条射线.③当0<a<2时,||PF1|-|PF2||=a<|F1F2|,所以点P的轨迹是以F1、F2为焦点的双曲线.14.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.15.下列各个对应中,从A到B构成映射的是()A.
B.
C.
D.
答案:按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.而在选项A和选项B中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义.选项C中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义,只有选项D满足映射的定义,故选D.16.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3
(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.17.不等式的解集是(
)
A.(-∞,-1)∪(-1,2]
B.[-1,2]
C.(-∞,-1)∪[2,+∞)
D.(-1,2]答案:D18.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G
是何种曲线之间的关系是:______
圆M与的位置相离相切相交G
是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率
0<e<1,此时r<d,圆M与准线相离;抛物线的离心率
e=1,此时r=d,圆M与准线相切;双曲线的离心率
e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.19.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()
A.
B.
C.
D.答案:D20.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.221.若向量{}是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.
B.
C.
D.答案:C22.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.
(I)求直线的普通方程和圆的直角坐标方程;
(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)23.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.
A.60
B.150
C.300
D.210答案:B24.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:第一种由学生会的同学随机抽取20名同学进行调查;这是一种简单随机抽样,第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,对于个体比较多的总体,采用系统抽样,故选D.25.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()
A.①③
B.①②
C.③④
D.①④答案:B26.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()
A.B与C互斥
B.A与C互斥
C.任意两个事件均互斥
D.任意两个事件均不互斥答案:B27.设,是互相垂直的单位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)则实数m为()
A.-2
B.2
C.-
D.不存在答案:A28.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.29.x>1是x>2的()A.充分但不必要条件B.充要条件C.必要但不充分条件D.既不充分又不必要条件答案:由x>1,我们不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分条件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要条件∴x>1是x>2的必要但不充分条件故选C.30.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()
A.ρ=sinθ
B.ρ=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语pep四年级下册试卷及答案
- 英语6年级上册外研版试卷及答案
- 软件设计师考试项目实施的注意事项与试题与答案
- 跨国政治动态与地方治理试题及答案
- 公共政策中的伦理争议及解决途径试题及答案
- 理论与实践西方制度试题及答案
- 电气设备故障分析试题及答案
- 西方政治文化影响试题及答案
- 备战2025年的最佳练习题试题及答案
- 山东省聊城市2020年中考生物试题(原卷版)
- 装修续签协议合同协议
- 生产管理-乳业生产工艺流程
- 2025年度幼儿园教师编制考试全真模拟试题及答案(共五套)
- 新媒体业务面试题及答案
- 食堂应急预案管理制度
- 中级财务会计-中级财务会计复习学习资料
- 免疫细胞疗法在阿尔茨海默病中的应用-全面剖析
- 基于《山海经》神祇形象的青少年解压文具设计研究
- 教育与美好人生知到智慧树章节测试课后答案2024年秋郑州师范学院
- 2025年新高考历史预测模拟试卷黑吉辽蒙卷(含答案解析)
- 传染病疫情报告制度及报告流程
评论
0/150
提交评论