版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年荆州理工职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.2.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:243.设,则之间的大小关系是
.答案:b>a>c解析:略4.已知a≠0,证明关于x的方程ax=b有且只有一个根.答案:证明:一方面,∵ax=b,且a≠0,方程两边同除以a得:x=ba,∴方程ax=b有一个根x=ba,另一方面,假设方程ax=b还有一个根x0且x0≠ba,则由此不等式两边同乘以a得ax0≠b,这与假设矛盾,故方程ax=b只有一个根.综上所述,方程ax=b有且只有一个根.5.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A6.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()
A.梯形
B.圆外切四边形
C.圆内接四边
D.任意四边形答案:B7.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.8.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是______元.答案:设每台彩电原价是x元,由题意可得(1+40%)x•0.8-x=144,解得x=1200,故为1200.9.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.10.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()
A.()
B.()
C.()
D.()答案:D11.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(12分)[解法一]∵该直线上的任一点P(x,y),其经变换后得到的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,当b≠0时,方程组-(3k+1)=1k-3=k无解,故这样的直线不存在.
…(16分)当b=0时,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)[解法二]取直线上一点P(-bk,0),其经变换后的点Q(-bk,-3bk)仍在该直线上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直线为y=kx,取直线上一点P(0,k),其经变换后得到的点Q(1+3k,3-k)仍在该直线上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)12.赋值语句M=M+3表示的意义()
A.将M的值赋给M+3
B.将M的值加3后再赋给M
C.M和M+3的值相等
D.以上说法都不对答案:B13.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:
①“取出两只红球和一只白球”与“取出一只红球和两只白球”;
②“取出两只红球和一只白球”与“取出3只红球”;
③“取出3只红球”与“取出的3只球中至少有一只白球”;
④“取出3只红球”与“取出3只白球”.
其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.14.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.15.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()
A.相交
B.相切
C.相离
D.不能确定答案:C16.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.
问:(1)这种猜想,你认为正确吗?
(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?
(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立17.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()
A.
B.
C.1
D.答案:D18.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.
(ⅰ)求证:直线AB恒过一定点,并求出该定点的坐标;
(ⅱ)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.答案:(Ⅰ)曲线C的方程x2=4y(5分)(Ⅱ)(ⅰ)设E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x过点A的抛物线切线方程为y-x214=12x1(x-x1),∵切线过E点,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8可得AB中点为(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直线AB的方程为y-(a22+2)=a2(x-a)即y=a2x+2,∴AB过定点(0,2)(10分)(ⅱ)由(ⅰ)知AB中点N(a,a2+42),直线AB的方程为y=a2x+2当a≠0时,则AB的中垂线方程为y-a2+42=-2a(x-a),∴AB的中垂线与直线y=-2的交点M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM为等边三角形,则|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此时E(±2,-2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2,-2).(15分)19.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为______.答案:设直线l的方程为y=k(x-4),即kx-y-4k=0∵直线l与曲线(x-2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直线l的斜率的取值范围为[-33,33]故为[-33,33]20.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D21.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()A.13B.12C.34D.14答案:记事件A={△PBC的面积大于S4},基本事件空间是线段AB的长度,(如图)因为S△PBC>S4,则有12BC?PE>14×12BC?AD;化简记得到:PEAD>14,因为PE平行AD则由三角形的相似性PEAD>14;所以,事件A的几何度量为线段AP的长度,因为AP=34AB,所以△PBC的面积大于S4的概率=APAB=34.故选C.22.双曲线C的焦点在x轴上,离心率e=2,且经过点P(2,3),则双曲线C的标准方程是______.答案:设双曲线C的标准方程x2a2-y2b2=1,∵经过点P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②联立方程组并解得
a2=1,b2=3,双曲线C的标准方程是x2-y23=1,故为:x2-y23=1.23.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.24.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12
时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.25.如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)
(1)求证:AE∥平面DCF;
(2)若M是AE的中点,AB=3,∠CEF=90°,求证:平面AEF⊥平面BMC.答案:(1)证法1:过点E作EG⊥CF交CF于G,连结DG,可得四边形BCGE为矩形,又四边形ABCD为矩形,所以AD=EG,从而四边形ADGE为平行四边形故AE∥DG
因为AE?平面DCF,DG?平面DCF,所以AE∥平面DCF
证法2:(面面平行的性质法)因为四边形BEFC为梯形,所以BE∥CF.又因为BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因为四边形ABCD为矩形,所以AB∥DC.同理可证AB∥平面DCF.又因为BE和AB是平面ABE内的两相交直线,所以平面ABE∥平面DCF.又因为AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中点,∴BM⊥AE,由侧视图是矩形,俯视图是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.26.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A27.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()
A.100个心脏病患者中至少有99人打酣
B.1个人患心脏病,则这个人有99%的概率打酣
C.100个心脏病患者中一定有打酣的人
D.100个心脏病患者中可能一个打酣的人都没有答案:D28.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()
A.有且仅有一条
B.有且仅有两条
C.有无穷多条
D.不存在答案:B29.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函数y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正确;B、∵f(x)=1x,∴x≠0,故B错误;C、f(x)=x3,其定义域为R,故C错误;D、f(x)=ex,其定义域为R,故D错误;故选A.30.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速v(km/h)满足下列关系:s=(n为常数,且n∈N),做了两次刹车试验,有关试验数据如图所示,其中,
(1)求n的值;
(2)要使刹车距离不超过12.6m,则行驶的最大速度是多少?答案:解:(1)依题意得,解得,又n∈N,所以n=6;(2)s=,因为v≥0,所以0≤v≤60,即行驶的最大速度为60km/h。31.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.32.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.33.若不等式的解集,则实数=___________.答案:-434.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)35.设=(-2,2,5),=(6,-4,4)分别是平面α,β的法向量,则平面α,β的位置关系是()
A.平行
B.垂直
C.相交但不垂直
D.不能确定答案:B36.不等式log32x-log3x2-3>0的解集为()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D37.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.38.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x39.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.
(1)求X<2且Y>1时的概率
(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.40.制作一个面积为1
m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长
l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.41.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.42.直线(t为参数)被圆x2+y2=9截得的弦长为()
A.
B.
C.
D.答案:B43.下列各量:①密度
②浮力
③风速
④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.44.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.45.某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为ξ,求ξ的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.答案:(I)ξ的所有可能的取值为0,1,2,3,….….(2分)则P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列为ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)记“张强被选中”为事件A,“李莉也被选中”为事件B,则P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)46.a=(2,1),b=(3,4),则向量a在向量b方向上的投影为______.答案:根据向量在另一个向量上投影的定义向量a在向量b方向上的投影为a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故为:247.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.48.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有()
A.36个
B.42个
C.30个
D.35个答案:A49.已知A,B两点的极坐标为(6,)和(8,),则线段AB中点的直角坐标为()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D50.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()
A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于
B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于
C.假设|f(1)|,|f(2)|,|f(3)|都不小于
D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D第2卷一.综合题(共50题)1.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?
(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=22.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.3.抛物线y=x2的焦点坐标是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C4.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.5.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:126.命题“所以奇数的立方是奇数”的否定是()
A.所有奇数的立方不是奇数
B.不存在一个奇数,它的立方不是奇数
C.存在一个奇数,它的立方不是奇数
D.不存在一个奇数,它的立方是奇数答案:C7.已知A(1,1),B(2,4),则直线AB的斜率为()
A.1
B.2
C.3
D.4答案:C8.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小为45°(2)直线BD与EF所成的角的余弦值为解析:(1)∵AD与两圆所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依题意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小为45°;(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.设异面直线BD与EF所成角为,则cos=|cos〈,〉|=.即直线BD与EF所成的角的余弦值为.9.设a1,a2,…,a2n+1均为整数,性质P为:对a1,a2,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.答案:证明:①当a1,a2,…,a2n+1全部相等时,从中任意2n个数,将其分为两组,每组n个数,两组所有元素的和相等,故性质P成立.②下面证明:当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.反证法:假设a1,a2,…,a2n+1不全部相等,则其中至少有一个整数和其它的整数不同,不妨设此数为a1,若a1在取出的2n个数中,将其分为两组,每组n个数,则a1在的那个组所有元素的和与另一个组所有元素的和不相等,这与性质P矛盾,故假设不成立,所以,当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.综上,a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.10.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差,中位数分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)
(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。11.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足
(1)判断三个向量是否共面;
(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,12.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.13.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.14.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.15.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.16.正方形ABCD中,AB=1,分别以A、C为圆心作两个半径为R、r(R>r)的圆,当R、r满足条件______时,⊙A与⊙C有2个交点(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B17.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A18.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C19.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C20.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.21.不等式﹣2x+1>0的解集是(
).答案:{x|x<}22.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos234023.点(2,0,3)在空间直角坐标系中的位置是在()
A.y轴上
B.xOy平面上
C.xOz平面上
D.第一卦限内答案:C24.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.25.为了了解某社区居民是否准备收看奥运会开幕式,某记者分别从社区的60~70岁,40~50岁,20~30岁的三个年龄段中的160,240,X人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()
A.90
B.120
C.180
D.200答案:D26.当a≠0时,y=ax+b和y=bax的图象只可能是()
A.
B.
C.
D.
答案:A27.四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.答案:设火讯点的坐标P(x,y),由于观察到的距离相差为6,点P在双曲线上,由于离A近,所以点P在双曲线x29-y216=1(x≥3)上;由于离C近,所以点P在双曲线Y29-X216=1(Y≥3)上;由这两个方程解得:x=1277y=1277答:火讯点的坐标为:(1277,1277).28.(选做题)参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=129.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.30.(文)不等式的解集是(
)A.B.C.D.答案:D解析:【思路分析】:原不等式可化为,得,故选D.【命题分析】考查不等式的解法,要求同解变形.31.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
D.答案:C32.已知x1、x2是关于x1的方程x2-(k-2)x+k2+3k+5=0的两个实根,那么x12+x22的最大值是[
]
A.19
B.17
C.
D.18答案:D33.把下列命题写成“若p,则q”的形式,并指出条件与结论.
(1)相似三角形的对应角相等;
(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.34.设x1、x2、y1、y2是实数,且满足x12+x22≤1,
证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分35.中,是边上的中线(如图).
求证:.
答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..36.已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立答案:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D37.已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:
(1)AE与平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D为坐标原点建立空间直角坐标系,如图所示:(1)设正方体棱长为2.则E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量为n=(0,1,0).设AE与平面BCC1B1所成的角为θ.sinθ=|cos<AE,n>|=|AE•n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).设平面DBC1的法向量为n1=(x,y,z),则n1•DB=x+y=0n1•DC1=y+z=0,令y=-1,则x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量为n2=(0,0,1).设二面角C1-DB-A的大小为α,从图中可知:α为钝角.∵cos<n1,n2>=n1•n2|n1|
|n2|=13=33,∴cosα=-33.38.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()
A.梯形
B.圆外切四边形
C.圆内接四边
D.任意四边形答案:B39.某校高三有1000个学生,高二有1200个学生,高一有1500个学生.现按年级分层抽样,调查学生的视力情况,若高一抽取了75人,则全校共抽取了
______人.答案:∵高三有1000个学生,高二有1200个学生,高一有1500个学生.∴本校共有学生1000+1200+1500=3700,∵按年级分层抽,高一抽取了75人,∴每个个体被抽到的概率是751500=120,∴全校要抽取120×3700=185,故为:185.40.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()
A.H0:男性喜欢参加体育活动
B.H0:女性不喜欢参加体育活动
C.H0:喜欢参加体育活动与性别有关
D.H0:喜欢参加体育活动与性别无关答案:D41.若数据x1,x2,…,xn的方差为3,数据ax1+b,ax2+b,…,axn+b的标准差为23,则实数a的值为______.答案:数据ax1+b,ax2+b,…,axn+b的方差是数据x1,x2,…,xn的方差的a2倍;则数据ax1+b,ax2+b,…,axn+b的方差为3a2,标准差为3a2=23解得a=±2故为:±242.圆的极坐标方程为ρ=2cos(θ+π3),则该圆的圆心的极坐标是______.答案:∵ρ=2cos(θ+π3),展开得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圆心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圆心的极坐标是(1,-π3).故为(1,-π3).43.已知曲线C的方程是x2+y2+6ax-8ay=0,那么下列各点中不在曲线C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
D.(-3a,-a)答案:B44.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.45.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()
A.66
B.76
C.63
D.73答案:C46.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A47.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()
A.
B.
C.
D.答案:C48.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.49.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]50.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°第3卷一.综合题(共50题)1.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C2.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+13.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C4.函数y=a|x|(a>1)的图象是()
A.
B.
C.
D.
答案:B5.点P(2,5)关于直线x+y=1的对称点的坐标是(
)。答案:(-4,-1)6.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A7.已知两点P(4,-9),Q(-2,3),则直线PQ与y轴的交点分有向线段PQ的比为______.答案:直线PQ与y轴的交点的横坐标等于0,由定比分点坐标公式可得0=4+λ(-2)1+λ,解得λ=2,故直线PQ与y轴的交点分有向线段PQ的比为
λ=2,故为:2.8.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:89.一条直线上顺次有A、B、C三点,且|AB|=2,|BC|=3,则C分有向线段AB的比为()
A.-
B.-
C.-
D.-答案:A10.直线kx-y+1=3k,当k变动时,所有直线都通过定点[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A11.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.12.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.13.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.14.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.15.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()
A.-1
B.0
C.2
D.-2答案:B16.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D17.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.18.已知正数x,y,z满足5x+4y+3z=10.
(1)求证:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因为5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根据均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,当且仅当x5=y4=z3时,等号成立.综上,9x2+9y2+z2≥2?32=18.19.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于20.椭圆x216+y27=1上的点M到左准线的距离为53,则点M到左焦点的距离为()A.8B.5C.274D.54答案:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=4,b=7∴c=3∴e=ca=34,∴根据椭圆的第二定义有:MF
1d=34∴M到左焦点的距离为MF1=53×34=54故选D.21.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.22.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线23.某市某年一个月中30天对空气质量指数的监测数据如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.
分组频数频率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下图所示.
…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)101030[91,101)3330………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a,b,c,质量指数在区间[101,111)内的有2天,记这两天分别为d,e,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)24.若矩阵A=是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B25.参数方程(0<θ<2π)表示()
A.双曲线的一支,这支过点(1,)
B.抛物线的一部分,这部分过(1,)
C.双曲线的一支,这支过点(-1,)
D.抛物线的一部分,这部分过(-1,)答案:B26.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.27.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A28.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B29.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:
序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;
(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)30.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31631.正态曲线下、横轴上,从均值到+∞的面积为______答案:由正态曲线的对称性特点知,曲线与x轴之间的面积为1,所以从均数到的面积为整个面积的一半,即50%.填:0.5.32.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.33.如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是()
A.2
B.
C.
D.
答案:D34.与双曲线x2-y24=1有共同的渐近线,且过点(2,2)的双曲线的标准方程为______.答案:设双曲线方程为x2-y24=λ∵过点(2,2),∴λ=3∴所求双曲线方程为x23-y212=1故为x23-y212=135.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.36.已知向量与的夹角为120°,若向量,且,则=()
A.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《光学信息处理课程设计》课程教学大纲
- 2024年低价仓库租房合同范本
- 2024年出售百年树木合同范本
- 2024年承接全屋定制工程合同范本
- 《餐饮服务与管理》高教版(第二版)7.3菜品的定价原则与方法单元练习卷(解析版)
- 第四单元 三位数乘两位数(单元测试)(含答案)-2024-2025学年四年级上册数学人教版
- 2024两人合作简明合同范本
- 2024年胸苷项目评估分析报告
- 2024至2030年中国船用滚轮闸刀掣链器行业投资前景及策略咨询研究报告
- 2024至2030年中国粉末剂数据监测研究报告
- 实验室十大危险操作和安全隐患
- 妇幼保健院关于修订岗位轮转制度
- 气候影响着人类活动人类活动对气候的影响
- 顶管及盾构施工技术及特点(62页)
- 生产部管理人员考试题(新进转正)范本
- 高中研究性学习如何选择、确立研究性学习课题PPT通用PPT课件
- 6S管理知识图解
- 高速铁路ZPW-2000轨道电路
- 县国家税务局文件材料归档范围及文书档案保管期限表
- 儿童消化道出血诊疗(课堂PPT)
- 桥梁荷载试验讲座
评论
0/150
提交评论