2023年江西司法警官职业学院高职单招(数学)试题库含答案解析_第1页
2023年江西司法警官职业学院高职单招(数学)试题库含答案解析_第2页
2023年江西司法警官职业学院高职单招(数学)试题库含答案解析_第3页
2023年江西司法警官职业学院高职单招(数学)试题库含答案解析_第4页
2023年江西司法警官职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年江西司法警官职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.2.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(

)。答案:(2.5,2.5)3.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D4.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).5.已知一直线斜率为3,且过A(3,4),B(x,7)两点,则x的值为()

A.4

B.12

C.-6

D.3答案:A6.下表表示y是x的函数,则函数的值域是

______.

答案:有图表可知,所有的函数值构成的集合为{2,3,4,5},故函数的值域为{2,3,4,5}.7.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm8.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.

A.60

B.150

C.300

D.210答案:B9.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.

(Ⅰ)求∠ADF的度数;

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3310.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,则x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a•b=x+2+0=0,x=-2.故为:-2.11.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.12.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是______.答案:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=836=29,故为:2913.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C14.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.15.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()

A.

B.

C.

D.答案:B16.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A17.用数学归纳法证明不等式成立,起始值至少应取为()

A.7

B.8

C.9

D.10答案:B18.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC=25,则AB=______.答案:∵AB是直径,∴△ABC是直角三角形,∵C在直径AB上的射影为D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故为:1019.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为______.答案:a2+b2的几何意义是到原点的距离,它的最小值转化为原点到直线3x+4y=15的距离:d=155=3.故为3.20.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制21.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π22.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()

A.相离

B.相切或相交

C.相交

D.相切答案:C23.设P,Q为△ABC内的两点,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.24.i是虚数单位,若(3+5i)x+(2-i)y=17-2i,则x、y的值分别为()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B25.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是

______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1226.设直线l过点P(-3,3),且倾斜角为56π

(1)写出直线l的参数方程;

(2)设此直线与曲线C:x=2cosθy=4sinθ(θ为参数)交A、B两点,求|PA|•|PB|答案:(1)由于过点(a,b)倾斜角为α的直线的参数方程为

x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点P(-3,3),倾斜角α=5π6,故直线的参数方程是x=-3-32ty=3+12t(t是参数).…(5分)(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t1,则点A,B的坐标分别为A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直线L的参数方程代入椭圆的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因为t1和t2是方程①的解,从而t1t2=11613,由t的几何意义可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|•|PB|=11613.27.已知m2+n2=1,a2+b2=2,则am+bn的最大值是()

A.1

B.

C.

D.以上都不对答案:C28.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)

(1)求实数a的值;

(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.29.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:

①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;

③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.

上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.30.若随机向一个半径为1的圆内丢一粒豆子(假设该豆子一定落在圆内),则豆子落在此圆内接正三角形内的概率是______.答案:∵圆O是半径为R=1,圆O的面积为πR2=π则圆内接正三角形的边长为3,而正三角形ABC的面积为343,∴豆子落在正三角形ABC内的概率P=334π=334π故为:334π31.已知f(10x)=x,则f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故为:lg532.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310

(2X)3=960x3,故为960x3.33.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C34.曲线x=sinθy=sin2θ(θ为参数)与直线y=a有两个公共点,则实数a的取值范围是______.答案:曲线

x=sinθy=sin2θ

(θ为参数),为抛物线段y=x2(-1≤x≤1),借助图形直观易得0<a≤1.35.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C36.两平行直线x+3y-4=0与2x+6y-9=0的距离是

______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:102037.判断下列各组中的两个函数是同一函数的为()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定义域:{x|x≠0},g(x)的定义域为R,故A错误;B、f(x)=x0=1,g(x)=1,定义域都为{x|x≠1},故B正确;C、∵f(x)=x2=|x|,g(x)=x,解析式不一样,故C错误;D、∵f(x)=|x|,g(x)=x,f(x)的定义域为R,g(x)的定义域为:{x|x≥0},故D错误;故选B.38.已知z1=5+3i,z2=5+4i,下列各式中正确的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1与z2为虚数,故不能比较大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故选D.39.柱坐标(2,,5)对应的点的直角坐标是

。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()40.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.41.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.42.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.43.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.44.设函数g(x)=ex

x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故为:12.45.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()

A.

B.

C.

D.答案:C46.极坐标方程ρcos2θ=0表示的曲线为()

A.极点

B.极轴

C.一条直线

D.两条相交直线答案:D47.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A48.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(

)

答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.49.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?

(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.50.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C第2卷一.综合题(共50题)1.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B2.在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O为坐标原点),求向量OB;

(2)若向量AC与向量a共线,当k>4,且tsinθ取最大值4时,求OA•OC.答案:(1)∵点A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB•a=(n-8,t)•(-1,2)=0,得n=2t+8.则AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,当t=8时,n=24;当t=-8时,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC与向量a共线,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故当sinθ=4k时,tsinθ取最大值32k,有32k=4,得k=8.这时,sinθ=12,k=8,tsinθ=4,得t=8,则OC=(4,8).∴OA•OC=(8,0)•(4,8)=32.3.(几何证明选讲选做题)

如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是______.答案:∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故为:22.4.直线4x-3y+5=0与直线8x-6y+5=0的距离为______.答案:直线4x-3y+5=0即8x-6y+10=0,由两平行线间的距离公式得:直线4x-3y+5=0(8x-6y+10=0)与直线8x-6y+5=0的距离是

|10-5|62+82=12,故为:12.5.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:356.设随机变量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根据所给的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根据所给的分布列和第一问做出的结果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)7.三行三列的方阵.a11a12

a13a21a22

a23a31a32

a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.8.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于随机数表中第8行的数字为:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,1059.已知圆C:x2+y2-4y-6y+12=0,求:

(1)过点A(3,5)的圆的切线方程;

(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.10.正方形ABCD的边长为1,=,=,则|+|=(

A.0

B.2

C.

D.2答案:C11.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.

(1)求l1的斜率k1的取值范围;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).12.写出下列命题非的形式:

(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;

(2)q:若x=3或x=4,则方程x2-7x+12=0.答案:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.13.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.14.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()

A.至少有一个黒球与都是红球

B.至少有一个黒球与都是黒球

C.至少有一个黒球与至少有1个红球

D.恰有1个黒球与恰有2个黒球答案:D15.设点P(,1)(t>0),则||(O为坐标原点)的最小值是()

A.3

B.5

C.

D.答案:D16.已知

p:所有国产手机都有陷阱消费,则¬p是()

A.所有国产手机都没有陷阱消费

B.有一部国产手机有陷阱消费

C.有一部国产手机没有陷阱消费

D.国外产手机没有陷阱消费答案:C17.利用斜二侧画法画直观图时,①三角形的直观图还是三角形;②平行四边形的直观图还是平行四边形;③正方形的直观图还是正方形;④菱形的直观图还是菱形.其中正确的是

______.答案:由斜二侧直观图的画法法则可知:①三角形的直观图还是三角形;正确;②平行四边形的直观图还是平行四边形;正确.③正方形的直观图还是正方形;应该是平行四边形;所以不正确;④菱形的直观图还是菱形.也是平行四边形,所以不正确.故为:①②18.若曲线C的极坐标方程为

ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y19.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()

A.k1>k2>k3

B.k3>k2>k1

C.k2>k1>k3

D.k3>k1>k2

答案:C20.______称为向量;常用

______表示,记为

______,又可用小写字线表示为

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有带箭头的线段来表示,记为有向线段AB,②又可用小写字线表示为:a,b,c…,故为:既有大小,又有方向的量;有带箭头的线段,有向线段AB,a,b,c….21.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.22.已知P(B|A)=,P(A)=,则P(AB)=()

A.

B.

C.

D.答案:D23.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:

(1)与AO相等的向量有

______;

(2)写出与AO共线的向量有

______;

(3)写出与AO的模相等的向量有

______;

(4)向量AO与CO是否相等?答

______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等24.用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是()

A.a2=b2

B.a2<b2

C.a2≤b2

D.a2<b2,且a2=b2答案:C25.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(

A.6

B.2

C.-2

D.或-2答案:D26.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.

(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;

(2)在男生甲被选中的情况下,求女生乙也被选中的概率.答案:(1)ξ的所有可能取值为0,1,2.依题意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列为ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)设“男生甲被选中的情况下,女生乙也被选中”为事件C,“男生甲被选中”为事件A,“女生乙被选中”为事件B从4个男生、2个女生中选3人,男生甲被选中的种数为n(A)=C52=10,男生甲被选中,女生乙也被选中的种数为n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被选中的情况下,女生乙也被选中的概率为25.27.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为

______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:228.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.

答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.29.设xi,yi

(i=1,2,…,n)是实数,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一个排列.求证:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:证明:要证ni-1(xi-yi)2≥ni-1(xi-zi)2,只需证

ni=1

yi2-2ni=1

xi•yi≥ni=1

zi2-2ni=1

xi•zi,由于ni=1

yi2=ni=1

zi2,故只需证ni=1

xi•zi≤ni=1

xi•yi

①.而①的左边为乱序和,右边为顺序和,根据排序不等式可得①成立,故要证的不等式成立.30.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B31.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).32.直线y=kx+1与圆x2+y2=4的位置关系是()

A.相交

B.相切

C.相离

D.与k的取值有关答案:A33.已知向量a=(2,0),b=(1,x),且a、b的夹角为π3,则x=______.答案:由两个向量的数量积的定义、数量积公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故为±3.34.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C35.下列命题中,正确的是()

A.若a∥b,则a与b的方向相同或相反

B.若a∥b,b∥c,则a∥c

C.若两个单位向量互相平行,则这两个单位向量相等

D.若a=b,b=c,则a=c答案:D36.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因为i=5>4,结束循环,输出结果S=46.故为:46.37.已知实数x,y满足3x+4y+10=0,那么x2+y2的最小值为______.答案:设P(x,y),则|OP|=x2+y2,即x2+y2的几何意义表示为直线3x+4y+10=0上的点P到原点的距离的最小值.则根据点到直线的距离公式得点P到直线3x+4y+10=0的距离d=|10|32+42=105=2.故为:2.38.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.39.若e1、e2、e3是三个不共面向量,则向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?请说明理由.答案:解:设c=1a+2b,则即∵a、b不共线,向量a、b、c共面.40.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。

已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。

(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。41.8的值为()

A.2

B.4

C.6

D.8答案:B42.若|x-4|+|x+5|>a对于x∈R均成立,则a的取值范围为______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值为9.再由题意可得,当a<9时,不等式对x∈R均成立.故为(-∞,9).43.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面答案:B44.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:845.下列各组几何体中是多面体的一组是(

A.三棱柱、四棱台、球、圆锥

B.三棱柱、四棱台、正方体、圆台

C.三棱柱、四棱台、正方体、六棱锥

D.圆锥、圆台、球、半球答案:C46.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A:当x<-3时不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10解得:x≤-4当-3≤x≤5时不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立当x>5时不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).B:圆ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,3π2).C:由题意,DF=CF=22,BE=1,BF=2,由DF•FC=AF•BF,得22•22=AF•2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割线定理得CE2=BE•EA=1×7=7.∴CE=7.故为:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.47.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}48.已知|x|<ch,|y|>c>0.求证:|xy|<h.答案:证明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.49.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:7250.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].第3卷一.综合题(共50题)1.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C2.若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.当且仅当2x?1=3y?1,即2x=3y时取等号.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值为12,最小值点为(14,16).3.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D4.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;

(2)若,求实数a的取值范围答案:(1);(2)。解析:略5.三行三列的方阵.a11a12

a13a21a22

a23a31a32

a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.6.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b7.对于回归方程y=4.75x+2.57,当x=28时,y

的估计值是______.答案:∵回归方程y=4.75x+2.57,∴当x=28时,y的估计值是4.75×28+2.57=135.57.故为:135.57.8.设甲、乙两名射手各打了10发子弹,每发子弹击中环数如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9则甲、乙两名射手的射击技术评定情况是()

A.甲比乙好

B.乙比甲好

C.甲、乙一样好

D.难以确定答案:B9.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.10.直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),则经过A(a1,b1),B(a2,b2)两点的直线方程为______.答案:∵直线l1:a1x+b1y+1=0直线l2:a2x+b2y+1=0交于一点(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)两点都在直线2x+3y+1=0上,由于两点确定一条直线,因此经过A(a1,b1),B(a2,b2)两点的直线方程即为2x+3y+1=0.故为:2x+3y+1=0.11.如图,海中有一小岛,周围3.8海里内有暗礁.一军舰从A地出发由西向东航行,望见小岛B在北偏东75°,航行8海里到达C处,望见小岛B在北偏东60°.若此舰不改变舰行的方向继续前进,问此舰有没有触礁的危险?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,过B作AC的垂线垂足为D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴没有危险.12.从点A(2,-1,7)沿向量=(8,9,-12)的方向取线段长||=34,则B点坐标为()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B13.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(

A.

B.

C.

D.答案:D14.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,

(1)设直线l的倾斜角为α,写出直线l的参数方程;

(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p215.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.16.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1217.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()

A.

B.

C.

D.答案:D18.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:519.比较大小:a=0.20.5,b=0.50.2,则()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A20.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(

)。答案:34℃或45℃21.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()

A.24

B.48

C.144

D.288答案:C22.ab>0,则①|a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四个式中正确的是()

A.①②

B.②③

C.①④

D.②④答案:C23.已知a≠0,证明关于x的方程ax=b有且只有一个根.答案:证明:一方面,∵ax=b,且a≠0,方程两边同除以a得:x=ba,∴方程ax=b有一个根x=ba,另一方面,假设方程ax=b还有一个根x0且x0≠ba,则由此不等式两边同乘以a得ax0≠b,这与假设矛盾,故方程ax=b只有一个根.综上所述,方程ax=b有且只有一个根.24.双曲线C的焦点在x轴上,离心率e=2,且经过点P(2,3),则双曲线C的标准方程是______.答案:设双曲线C的标准方程x2a2-y2b2=1,∵经过点P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②联立方程组并解得

a2=1,b2=3,双曲线C的标准方程是x2-y23=1,故为:x2-y23=1.25.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.26.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.27.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.28.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()

A.0

B.

C.

D.答案:B29.命题“对于正数a,若a>1,则lg

a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4答案:原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.故选D.30.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.31.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C32.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.

A.60

B.150

C.300

D.210答案:B33.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意的连续取出2件,写出其中次品数ξ的概率分布.答案:依题意,随机变量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品数ξ的概率分布是:34.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论