版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年科尔沁艺术职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。2.
如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2
,则λ等()
A.
B.1
C.
D.2
答案:D3.如果执行程序框图,那么输出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故选C4.设a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,则实数m,n的值分别为______.答案:因为a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根据空间向量平行的坐标表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故为:m=12,n=6.5.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A6.命题“存在x0∈R,使x02+1<0”的否定是______.答案:∵命题“存在x0∈R,使x02+1<0”是一个特称命题∴命题“存在x0∈R,使x02+1<0”的否定是“对任意x0∈R,使x02+1≥0”故为:对任意x0∈R,使x02+1≥07.若,,,则
(
)
A.
B.
C.
D.答案:A8.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=39.点(2,0,3)在空间直角坐标系中的位置是在()
A.y轴上
B.xOy平面上
C.xOz平面上
D.第一卦限内答案:C10.抛物线x2+y=0的焦点位于()
A.y轴的负半轴上
B.y轴的正半轴上
C.x轴的负半轴上
D.x轴的正半轴上答案:A11.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).12.如图,在△OAB中,P为线段AB上的一点,,且,则()
A.
B.
C.
D.
答案:A13.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B14.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,求不同着色方法共有多少种?(以数字作答).答案:本题是一个分类和分步综合的题目,根据题意可分类求第一类用三种颜色着色,由乘法原理C14C41
C12=24种方法;第二类,用四种颜色着色,由乘法原理有2C14C41
C12
C11=48种方法.从而再由加法原理得24+48=72种方法.即共有72种不同的着色方法.15.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.16.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.17.下列集合中,不同于另外三个集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即方程“x=0”.故选D.18.经过点M(1,1)且在两轴上截距相等的直线是______.答案:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或y=x.故为:x+y=2或y=x19.有一批数量很大的产品,其中次品率是20%,对这批产品进行抽查,每次抽出一件,如果抽出次品则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过9次,那么抽查次数为9次的概率为(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C20.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为______.答案:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(12,0),依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故为:172.21.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A22.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)23.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A24.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:025.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()
A.当n=6时,该命题不成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=4时,该命题成立答案:C26.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C27.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011答案:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.28.用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是()
A.三角形的内角至少有一个钝角
B.三角形的内角至少有两个钝角
C.三角形的内角没有一个钝角
D.三角形的内角没有一个钝角或至少有两个钝角答案:B29.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C30.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()
A.一颗是3点,一颗是1点
B.两颗都是2点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点答案:D31.如果如图所示的程序中运行后输出的结果为132,那么在程序While后面的“条件”应为______.答案:第一次循环之后s=12,i=11;第二次循环之后结果是s=132,i=10,已满足题意跳出循环.由于此循环体是当型循环i=12、11都满足条件,i=10不满足条件.故为:i≥1132.如图,PA,PB切⊙O于
A,B两点,AC⊥PB,且与⊙O相交于
D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°33.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.34.有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度.答案:由于台体的体积V=13(S+SS′+S′)h,则h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度为75cm.35.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.36.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D37.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C38.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()
A.0
B.
C.
D.答案:B39.下列对一组数据的分析,不正确的说法是()
A.数据极差越小,样本数据分布越集中、稳定
B.数据平均数越小,样本数据分布越集中、稳定
C.数据标准差越小,样本数据分布越集中、稳定
D.数据方差越小,样本数据分布越集中、稳定答案:B40.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC41.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C42.已知a为常数,a>0且a≠1,指数函数f(x)=ax和对数函数g(x)=logax的图象分别为C1与C2,点M在曲线C1上,线段OM(O为坐标原点)与曲线C1的另一个交点为N,若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标2倍,则点P的坐标为______.答案:设点M的坐标为(m,am),点N的坐标为(n,an)∵点P的横坐标与点M的纵坐标相等∴点P的坐标为(am,m)∵点P的纵坐标是点N的横坐标2倍,∴m=2n而O、M、N三点共线则amm=ann=
am2m2解得:am=4即m=loga4∴点P的坐标为(4,loga4)故为:(4,loga4)43.曲线x=t+1ty=12(t+1t)(t为参数)的直角坐标方程是______.答案:∵曲线C的参数方程x=t+1ty=12(t+1t)(t为参数)x=t+1t≥2,可得x的限制范围是x≥2,再根据x2=t+1t+2,∴t+1t=x2-2,可得直角坐标方程是:x2=2(y+1),(x≥2),故为:x2=2(y+1),(x≥2).44.方程组的解集是[
]A.
B.{x,y|x=3且y=-7}
C.{3,-7}
D.{(x,y)|x=3且y=-7}答案:D45.若点P(-1,3)在圆x2+y2=m2上,则实数m=______.答案:∵点P(-1,3)在圆x2+y2=m2上,∴点P坐标代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故为:±246.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.47.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()
A.逗号
B.空格
C.分号
D.顿号答案:A48.将3封信投入5个邮筒,不同的投法共有()
A.15
种
B.35
种
C.6
种
D.53种答案:D49.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.50.已知正方形ABCD的边长为1,=,=,=,则的模等于(
)
A.0
B.2+
C.
D.2答案:D第2卷一.综合题(共50题)1.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.2.如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D3.从5名男学生、3名女学生中选3人参加某项知识对抗赛,要求这3人中既有男生又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种答案:由题意知本题是一个分类计数问题,要求这3人中既有男生又有女生包括两种情况,一是两女一男,二是两男一女,当包括两女一男时,有C32C51=15种结果,当包括两男一女时,有C31C52=30种结果,∴根据分类加法得到共有15+30=45故选A.4.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.5.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.6.点M的直角坐标是(,-1),在ρ≥0,0≤θ<2π的条件下,它的极坐标是()
A.(2,)
B.(2,)
C.(,)
D.(,)答案:A7.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.8.(几何证明选讲选做题)
如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则切线PA的长度等于______.答案:∵∠PAB=120°,∴优弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圆O的切线,切点为A,∴∠OAP=90°∴PA=3OA=23故为:239.(x+1)4的展开式中x2的系数为()A.4B.6C.10D.20答案:(x+1)4的展开式的通项为Tr+1=C4rxr令r=2得T3=C42x2=6x∴展开式中x2的系数为6故选项为B10.用“辗转相除法”求得和的最大公约数是(
)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数11.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底.其中正确的命题是[
]A.①②
B.①③
C.②③
D.①②③答案:C12.如图所示的圆盘由八个全等的扇形构成,指针绕中心旋转,可能随机停止,则指针停止在阴影部分的概率为()A.12B.14C.16D.18答案:如图:转动转盘被均匀分成8部分,阴影部分占1份,则指针停止在阴影部分的概率是P=18.故选D.13.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。14.将参数方程x=2sinθy=1+2cos2θ(θ为参数,θ∈R)化为普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因为θ∈R,所以-1≤sinθ≤1,则-2≤x≤2.由①两边平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故为y=-x2+3(-2≤x≤2).15.点(1,2)到原点的距离为()
A.1
B.5
C.
D.2答案:C16.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.17.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.18.若k∈R,则“k>3”是“方程表示双曲线”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:A19.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B20.若曲线C的极坐标方程为
ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y21.若直线l经过原点和点A(-2,-2),则它的斜率为()
A.-1
B.1
C.1或-1
D.0答案:B22.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x23.命题“存在实数x,,使x>1”的否定是()
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1答案:C24.定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A.0B.6C.12D.18答案:当x=0时,z=0,当x=1,y=2时,z=6,当x=1,y=3时,z=12,故所有元素之和为18,故选D25.在△ABC中,=,=,且=2,则等于()
A.+
B.+
C.+
D.+答案:A26.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B27.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C28.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1229.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:171.8或148.230.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D31.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:132.给出一个程序框图,输出的结果为s=132,则判断框中应填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A33.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.34.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.35.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,
=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.36.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A37.已知三个向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:实数λ,μ,使p=λq+μr,则a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在实数,,使p=λq+μr,故向量p、q、r共面.38.a=0是复数a+bi(a,b∈R)为纯虚数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:当a=0时,复数a+bi=bi,当b=0是不是纯虚数即“a=0”成立推不出“复数a+bi(a,b∈R)为纯虚数”反之,当复数a+bi(a,b∈R)为纯虚数,则有a=0且b≠0即“复数a+bi(a,b∈R)为纯虚数”成立能推出“a=0“成立故a=0是复数a+bi(a,b∈R)为纯虚数的必要不充分条件故选B39.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为()A.2B.3C.4D.无数个答案:由题意,两腰为2,底角为30°;两腰为2,顶角为30°;底边为2,底角为30°;底边为2,顶角为30°.∴共4个元素,故选C.40.方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,则实数k的取值范围为______.答案:构造函数f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴实数k的取值范围为(0,15)故为:(0,15)41.设双曲线的焦点在x轴上,两条渐近线为y=±x,则双曲线的离心率e=()
A.5
B.
C.
D.答案:C42.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.43.一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.44.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.
①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤45.下列说法正确的是()
A.互斥事件一定是对立事件,对立事件不一定是互斥事件
B.互斥事件不一定是对立事件,对立事件一定是互斥事件
C.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大
D.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小答案:B46.若a2+b2=4,则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是______.答案:若a2+b2=4,由于两圆(x-a)2+y2=1和x2+(y-b)2=1的圆心距为(a-0)2+(0-b)2=a2+b2=2,正好等于两圆的半径之和,故两圆相外切,故为相外切.47.设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是()
A.13
B.13.5
C.14
D.14.5答案:A48.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____49.已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则+(+)等于()
A.
B.
C.
D.
答案:C50.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|
)在∠AOB平分线线上,∴t(a|a|+b|b|
)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.第3卷一.综合题(共50题)1.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.2.已知f(x)在(0,2)上是增函数,f(x+2)是偶函数,那么正确的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根据函数的图象的平移可得把f(x+2)向右平移2个单位可得f(x)的图象f(x+2)是偶函数,其图象关于y轴对称可知f(x)的图象关于x=2对称∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)单调递增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故选:B3.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.4.正多面体只有______种,分别为______.答案:正多面体只有5种,分别为正四面体、正六面体、正八面体、正十二面体、正二十面体.故为:5,正四面体、正六面体、正八面体、正十二面体、正二十面体.5.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C6.中,是边上的中线(如图).
求证:.
答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..7.点P,设△ABC的面积是△PBC的面积的m倍,那么m=()
A.1
B.
C.4
D.2答案:B8.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.9.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.10.对任意的实数k,直线y=kx+1与圆x2+y2=2
的位置关系一定是()
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心答案:C11.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.12.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四13.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.14.一直线倾斜角的正切值为34,且过点P(1,2),则直线方程为______.答案:因为直线倾斜角的正切值为34,即k=3,又直线过点P(1,2),所以直线的点斜式方程为y-2=34(x-1),整理得,3x-4y+5=0.故为3x-4y+5=0.15.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.16.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ17.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()
A.逗号
B.空格
C.分号
D.顿号答案:A18.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.19.设求证答案:证明略解析:左边-右边===
=
∴原不等式成立。证法二:左边>0,右边>0。∴原不等式成立。20.某市某年一个月中30天对空气质量指数的监测数据如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.
分组频数频率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下图所示.
…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)101030[91,101)3330………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a,b,c,质量指数在区间[101,111)内的有2天,记这两天分别为d,e,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)21.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.22.下表为广州亚运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备1200元,预订15张下表中球类比赛的门票。比赛项目票价(元/场)足球
篮球
乒乓球100
80
60若在准备资金允许的范围内和总票数不变的前提下,该球迷想预订上表中三种球类比赛门票,其中篮球比赛门票数与乒乓球比赛门票数相同,且篮球比赛门票的费用不超过足球比赛门票的费用,求可以预订的足球比赛门票数。答案:解:设预订篮球比赛门票数与乒乓球比赛门票数都是n(n∈N*)张,则足球比赛门票预订(15-2n)张,由题意得解得由n∈N*,可得n=5,∴15-2n=5∴可以预订足球比赛门票5张。23.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血清的人作比较,结果如下:
未感冒
感冒
合计
试验过
252
248
500
未用过
224
276
500
合计
476
524
1000
根据上表数据,算得Χ2=3.14.以下推断正确的是()
A.血清试验与否和预防感冒有关
B.血清试验与否和预防感冒无关
C.通过是否进行血清试验可以预测是否得感冒
D.通过是否得感冒可以推断是否进行了血清试验答案:A24.将函数="2x"+1的图像按向量平移得函数=的图像则
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.25.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.26.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关答案:C27.如图,已知点P在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°.
(Ⅰ)求DP与CC′所成角的大小;
(Ⅱ)求DP与平面AA′D′D所成角的大小.答案:方法一:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于H.设DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA•DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因为cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)方法二:如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).设P(x,y,z)则BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,则DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因为cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP与CC'所成的角为45°.(8分)(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).因为cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP与平面AA'D'D所成的角为30°.(12分)28.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.29.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是
______.答案:∵“a,b都是奇数”的否命题是“a,b不都是奇数”,“a+b是偶数”的否命题是“a+b不是偶数”,∴命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故为:若a+b不是偶数,则a,b不都是奇数.30.一个算法的流程图如图所示,则输出S的值为
.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.31.某次考试,满分100分,按规定x≥80者为良好,60≤x<80者为及格,小于60者不及格,画出当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的程序框图.答案:第一步:输入一个成绩X(0≤X≤100)第二步:判断X是否大于等于80,若是,则输出良好;否则,判断X是否大于等于60,若是,则输出及格;否则,输出不及格;第三步:算法结束32.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A33.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故为[1,2).34.分析如图的程序:若输入38,运行右边的程序后,得到的结果是
______.答案:根据程序语句,其意义为:输入一个x,使得9<x<100a=x\10
为去十位数b=xMOD10
去余数,即取个位数x=10*b+a
重新组合数字,用原来二位数的十位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能仓储厂房出租居间合同范本3篇
- 二零二五年度车房租赁与停车大数据分析合同2篇
- 专业跑鞋定制采购合同(2024版)版B版
- 中英对照商品购销协议范本(2024年版)版
- 2025年度绿色节能型厂房装修合同范本4篇
- 专属药物开发:2024年度定制化服务协议版B版
- 二零二五年度餐饮企业食品安全教育与培训合同6篇
- 2024私人租赁汽车租赁合同范本(含跨境服务)3篇
- 2025年拆除工程劳务服务合同范本(含工期保障)4篇
- 2025便邻士便利店供应链合作框架协议范本3篇
- 英语名著阅读老人与海教学课件(the-old-man-and-the-sea-)
- 学校食品安全知识培训课件
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- 最新《会计职业道德》课件
- DB64∕T 1776-2021 水土保持生态监测站点建设与监测技术规范
- 中医院医院等级复评实施方案
- 数学-九宫数独100题(附答案)
- 理正深基坑之钢板桩受力计算
- 学校年级组管理经验
- 10KV高压环网柜(交接)试验
- 未来水电工程建设抽水蓄能电站BIM项目解决方案
评论
0/150
提交评论