版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年福州墨尔本理工职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).2.曲线的参数方程是(t是参数,t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B3.已知点A(1,2),直线l1:x=1+3ty=2-4t(t为参数)与直线l2:2x-4y=5相交于点B,则A、B两点之间的距离|AB|=______.答案:将x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以两直线的交点坐标为(52,0)所以|AB|=(1-52)2+(2-0)2
=52.故为:524.以双曲线x24-y216=1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程为______.答案:双曲线x24-y216=1的右焦点为F(25,0),一条渐近线为2x+y=0.∴所求圆的圆心为(25,0).∵所求圆被渐近线2x+y=0截得的弦长为6,∴圆心为(25,0)到渐近线2x+y=0的距离d=455=4,圆半径r=9+16=5,∴所求圆的方程是(x-25)2+y2=25.故为(x-25)2+y2=25.5.为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85]之间为良好;在[65,75]之间为合格;在(0,60)之间,体能素质为不合格.
现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;
(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示);
(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.答案:(1)由已知的数据可得频率分布表和频率分布直方图如下:
分组
频数
频率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[80,85)
10
1030[85,90)
6
630[90,95)
3
330[95,100)
1
130根据抽样,估计该校高一学生中体能素质为优秀的有1030×900=300人
…(5分)(2)ξ的可能取值为0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987
…(8分)∴ξ分布列为:ξ012P38874087987…(9分)所以,数学期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根据抽样,估计该校高一学生中体能素质为优秀有1030×900=300人,占总人数的13,体能素质为良好的有1430×900=420人,占总人数的715,体能素质为优秀或良好的共有2430×900=720人,占总人数的45,但体能素质为不合格或仅为合格的共有630×900=180人,占总人数的15,说明该校高一学生体能素质良好,但仍有待进一步提高,还需积极参加体育锻炼.6.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故为[1,2).7.如图表示空间直角坐标系的直观图中,正确的个数为()
A.1个
B.2个
C.3个
D.4个答案:C8.设函数f(x)=(2a-1)x+b是R上的减函数,则a的范围为______.答案:∵f(x)=(2a-1)x+b是R上的减函数,∴2a-1<0,解得a<12.故为:a<12.9.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.10.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.11.已知直线l:kx-y+1+2k=0.
(1)证明:直线l过定点;
(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.答案:(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)令y=0得A点坐标为(-2-1k,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.当且仅当4k=1k,即k=12时取等号.即△AOB的面积的最小值为4,此时直线l的方程为12x-y+1+1=0.即x-2y+4=012.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C13.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()
A.
B.
C.
D.答案:C14.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么
这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.15.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.16.已知求证:答案:证明见解析解析:证明:17.不等式:>0的解集为A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集为(-2,1)∪(2,+∞),选C。18.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.19.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C20.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.21.若e1、e2、e3是三个不共面向量,则向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?请说明理由.答案:解:设c=1a+2b,则即∵a、b不共线,向量a、b、c共面.22.圆锥曲线x=4secθ+1y=3tanθ的焦点坐标是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函数的运算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作双曲线x216-y29=1向右平移1个单位得到,而双曲线x216-y29=1的焦点为(-5,0),(5,0)故所求双曲线的焦点为(-4,0),(6,0)故为:(-4,0),(6,0)23.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为424.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.25.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()
A.
B.
C.
D.
答案:B26.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为______.答案:∵15000件产品中有1000件次品,从中抽取150件进行检查,∴查得次品数的数学期望为150×100015000=10.故为10.27.若关于x,y的二元一次方程组m11mxy=m+12m至多有一组解,则实数m的取值范围是______.答案:关于x,y的二元一次方程组m11mxy=m+12m即二元一次方程组mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)当m-1≠0时(m2-1)x=m(m-1)至多有一组解∴m≠1故为:(-∞,1)∪(1,+∞)28.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191029.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()
A.++
B.++
C.--+
D.+-
答案:C30.用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:证明:(1)当n=1时,左边=12=1,右边=1×2×36=1,等式成立.(4分)(2)假设当n=k时,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,当n=k+1时,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6这就是说,当n=k+1时等式也成立.(10分)根据(1)和(2),可知等式对任何n∈N*都成立.(12分)31.能较好地反映一组数据的离散程度的是()
A.众数
B.平均数
C.标准差
D.极差答案:C32.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.33.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°34.求证:若圆内接四边形的两条对角线互相垂直,则从对角线交点到一边中点的线段长等于圆心到该边对边的距离.答案:以两条对角线的交点为原点O、对角线所在直线为坐标轴建立直角坐标系,(如图所示)
设A(-a,0),B(0,-b),C(c,0),D(0,d),则CD的中点E(c2,d2),AB的中点H(-a2,-b2).又圆心G到四个顶点的距离相等,故圆心G的横坐标等于AC中点的横坐标,等于c-a2,圆心G的纵坐标等于BD中点的纵坐标,等于d-b2.即圆心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要证的结论成立.35.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π36.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于
A.2
B.
C.4
D.答案:A37.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.38.某校有学生1
200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.39.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.40.已知单位向量a,b的夹角为,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B41.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.42.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好
D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D43.设
是不共线的向量,(k,m∈R),则A、B、C三点共线的充要条件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D44.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C45.随机地向某个区域抛撒了100粒种子,在面积为10m2的地方有2粒种子发芽,假设种子的发芽率为100%,则整个撒种区域的面积大约有______m2.答案:设整个撒种区域的面积大约xm2,由于假设种子的发芽率为100%,所以在面积为10m2的地方有2粒种子发芽,意味着在面积为10m2的地方有2粒种子,从而有:100x=210,∴x=500,故为:500.46.若向量n与直线l垂直,则称向量n为直线l的法向量.直线x+2y+3=0的一个法向量为()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D47.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1448.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.
(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)49.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为
______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.50.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:171.8或148.2第2卷一.综合题(共50题)1.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A2.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.3.关于生活中的圆锥曲线,有下面几个结论:
(1)标准田径运动场的内道是一个椭圆;
(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线;
(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线;
(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.
其中正确命题的序号是______(把你认为正确命题的序号都填上).答案:(1)标准田径运动场的内道是有直道和弯道部分是半圆组成,不是椭圆.故错误(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线.故正确.(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线.故正确.(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.故正确.故为:(2)(3)(4)4.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.5.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()
A.5-
B.5+
C
D.10答案:B6.根据一组数据判断是否线性相关时,应选用()
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A7.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D8.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于
______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.9.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.10.已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为
______.答案:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距离为:d=1-2×0+712+22=855.故为:855.11.过点(-1,3)且平行于直线x-2y+3=0的直线方程为()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A12.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是
______.答案:∵ab=0的否命题是ab≠0,a、b中至少有一个为零的否命题是a≠0,且b≠0,∴命题“若ab=0,则a、b中至少有一个为零”的逆否命题是“若a≠0,且b≠0,则ab≠0.”故:若a≠0,且b≠0,则ab≠0.13.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A14.设a,b∈R.“a=O”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选B.15.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因为i=5>4,结束循环,输出结果S=46.故为:46.16.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).17.双曲线x2-4y2=4的两个焦点F1、F2,P是双曲线上的一点,满足·=0,则△F1PF2的面积为()
A.1
B.
C.2
D.答案:A18.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁答案:若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意.若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意.故获奖的歌手是丙故先C20.已知实数x,y满足3x+4y+10=0,那么x2+y2的最小值为______.答案:设P(x,y),则|OP|=x2+y2,即x2+y2的几何意义表示为直线3x+4y+10=0上的点P到原点的距离的最小值.则根据点到直线的距离公式得点P到直线3x+4y+10=0的距离d=|10|32+42=105=2.故为:2.21.已知△ABC和点M满足.若存在实数使得成立,则m=()
A.2
B.3
C.4
D.5答案:B22.命题“梯形的两对角线互相不平分”的命题形式为()A.p或qB.p且qC.非pD.简单命题答案:记命题p:梯形的两对角线互相平分,
而原命题是“梯形的两对角线互相不平分”,是命题p的否定形式
故选C23.若=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D24.写出按从小到大的顺序重新排列x,y,z三个数值的算法.答案:算法如下:(1).输入x,y,z三个数值;(2).从三个数值中挑出最小者并换到x中;(3).从y,z中挑出最小者并换到y中;(4).输出排序的结果.25.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()
A.相离
B.相切或相交
C.相交
D.相切答案:C26.如图,正方体ABCD-A1B1C1D1的棱长为1.
(1)求A1C与DB所成角的大小;
(2)求二面角D-A1B-C的余弦值;
(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.27.A、B是直线l上的两点,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC与BD成60°的角,则C、D两点间的距离是______答案:CD=CA+AB+BD,|CD|=|
CA+AB+BD|,CD=32+32+42+2×
3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故为:5或4328.已知平面上的向量PA、PB满足|PA|2+|PB|2=4,|AB|=2,设向量PC=2PA+PB,则|PC|的最小值是
______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故为2.29.已知=1-ni,其中m,n是实数,i是虚数单位,则m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C30.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()
A.
B.
C.或
D.或答案:C31.对任意的实数k,直线y=kx+1与圆x2+y2=2
的位置关系一定是()
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心答案:C32.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.33.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2011的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列∴OP2011的坐标为(2,4020)故为:(2,4020)34.从四个公司按分层抽样的方法抽取职工参加知识竞赛,其中甲公司共有职工96人.若从甲、乙、丙、丁四个公司抽取的职工人数分别为12,21,25,43,则这四个公司的总人数为()
A.101
B.808
C.1212
D.2012答案:B35.点(2,-2)的极坐标为______.答案:∵点(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴点(2,-2)的极坐标为(22,-π4)故为(22,-π4).36.选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
答案:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为5237.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..38.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.39.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.40.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()
A.12种
B.6种
C.10种
D.9种答案:D41.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.42.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A43.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D44.设a,b是不共线的两个向量,已知=2+m,=+,=-2.若A,B,D三点共线,则m的值为()
A.1
B.2
C.-2
D.-1答案:D45.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D46.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+247.已知a≠0,证明关于x的方程ax=b有且只有一个根.答案:证明:一方面,∵ax=b,且a≠0,方程两边同除以a得:x=ba,∴方程ax=b有一个根x=ba,另一方面,假设方程ax=b还有一个根x0且x0≠ba,则由此不等式两边同乘以a得ax0≠b,这与假设矛盾,故方程ax=b只有一个根.综上所述,方程ax=b有且只有一个根.48.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.故:圆.49.直线(t为参数)的倾斜角等于()
A.
B.
C.
D.答案:A50.写出下列命题非的形式:
(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;
(2)q:若x=3或x=4,则方程x2-7x+12=0.答案:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.第3卷一.综合题(共50题)1.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D2.下表为广州亚运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备1200元,预订15张下表中球类比赛的门票。比赛项目票价(元/场)足球
篮球
乒乓球100
80
60若在准备资金允许的范围内和总票数不变的前提下,该球迷想预订上表中三种球类比赛门票,其中篮球比赛门票数与乒乓球比赛门票数相同,且篮球比赛门票的费用不超过足球比赛门票的费用,求可以预订的足球比赛门票数。答案:解:设预订篮球比赛门票数与乒乓球比赛门票数都是n(n∈N*)张,则足球比赛门票预订(15-2n)张,由题意得解得由n∈N*,可得n=5,∴15-2n=5∴可以预订足球比赛门票5张。3.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,
(1)与BC相等的向量有
______;
(2)与OB长度相等的向量有
______;
(3)与DA共线的向量有
______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有
CB、BC.4.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D5.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()
A.圆
B.椭圆
C.双曲线
D.抛物线答案:B6.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.7.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.8.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.9.已知变量a,b已被赋值,要交换a、b的值,应采用的算法是()
A.a=b,b=a
B.a=c,b=a,c=b
C.a=c,b=a,c=a
D.c=a,a=b,b=c答案:D10.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)
,令⊙=mq-np,下面说法错误的序号是()
①若若a与共线,则⊙=0
②⊙=⊙a
③对任意的λ∈R,有(λ)⊙=λ(⊙)
④(⊙)2+(a)2=||2||2
A.②
B.①②
C.②④
D.③④答案:A11.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.12.已知圆C的圆心为(1,1),半径为1.直线l的参数方程为x=2+tcosθy=2+tsinθ(t为参数),且θ∈[0,π3],点P的直角坐标为(2,2),直线l与圆C交于A,B两点,求|PA|•|PB||PA|+|PB|的最小值.答案:圆C的普通方程是(x-1)2+(y-1)2=1,将直线l的参数方程代入并化简得t2+2(sinθ+cosθ)t+1=0,由直线参数方程的几何意义得|PA|+|PB|=2|sinθ+cosθ|,|PA|•|PB|=1所以|PA|•|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],当θ=π4时,|PA|•|PB||PA|+|PB|取得最小值122×1=24,所以|PA|•|PB||PA|+|PB|的最小值是24.13.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B14.已知x1、x2是关于x1的方程x2-(k-2)x+k2+3k+5=0的两个实根,那么x12+x22的最大值是[
]
A.19
B.17
C.
D.18答案:D15.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是()A.A,B,C三点可以构成直角三角形B.A,B,C三点可以构成锐角三角形C.A,B,C三点可以构成钝角三角形D.A,B,C三点不能构成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三点可以构成直角三角形,故选A.16.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是
(
)
A.
B.
C.
D.答案:A17.函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为
______.答案:∵y=ax与y=loga(x+1)具有相同的单调性.∴f(x)=ax+loga(x+1)在[0,1]上单调,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=12故为:1218.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()
A.=
B=
C.=a+b
D.答案:A19.已知斜二测画法得到的直观图△A′B′C′是正三角形,画出原三角形的图形.答案:由斜二测法知:B′C′不变,即BC与B′C′重合,O′A′由倾斜45°变为与x轴垂直,并且O′A′的长度变为原来的2倍,得到OA,由此得到原三角形的图形ABC.20.下列命题中为真命题的是(
)
A.平行直线的倾斜角相等
B.平行直线的斜率相等
C.互相垂直的两直线的倾斜角互补
D.互相垂直的两直线的斜率互为相反数答案:A21.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.22.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B23.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:
x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y=
bx+
a;
(3)估计使用年限为10年时,维修费用为多少?
(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.24.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()
A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角
B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角
C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角
D.以上都不对答案:B25.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.26.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PBPA=12,PCPD=13,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.设OB=x,PC=y,则有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.27.有以下四个结论:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,则x=e2;
④ln(lg1)=0.
其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A28.已知a=20.5,,,则a,b,c的大小关系是()
A.a>c>b
B.a>b>c
C.c>b>a
D.c>a>b答案:B29.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D30.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.31.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故选A.32.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.33.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C34.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为()
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形答案:B35.若抛物线y2=4x上一点P到其焦点的距离为3,则点P的横坐标等于______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=3=x+p2=3,∴x=2,故为:2.36.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()
A.20°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硫酸锌施工单位廉政合同
- 古镇陶艺店租赁协议
- 交通运输行业人员租赁合同
- 停车场水电布线协议
- 市政资源拓展房屋拆迁施工合同
- 通信项目经理聘用合同年薪制
- 培训机构租赁合同模板
- 商务楼大堂清洁维护协议
- 食品添加剂厂自来水安装合同
- 网络技术研发合作协议
- 2023届上海市嘉定区初三中考物理一模试卷+答案
- 中国古典文献学(全套)
- 业委会关于小区物业公司解除物业服务合同的函
- “统计与概率”在小学数学教材中的编排分析
- xx中心小学综合实践基地计划模板(完整版)
- 安规考试题库500题(含标准答案)
- 2022年度个人政治素质考察自评报告三篇
- NB∕T 13007-2021 生物柴油(BD100)原料 废弃油脂
- 肺结核患者管理结案评估表
- 2021离婚协议书电子版免费
- 《班主任工作常规》课件
评论
0/150
提交评论