版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年河南水利与环境职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.
若向量,满足||=||=2,与的夹角为60°,则|+|=()
A.
B.2
C.4
D.12答案:B2.已知a,b,c是三条直线,且a∥b,a与c的夹角为θ,那么b与c夹角是______.答案:∵a∥b,∴b与c夹角等于a与c的夹角又∵a与c的夹角为θ∴b与c夹角也为θ故为:θ3.如图,四边形ABCD内接于圆O,且AC、BD交于点E,则此图形中一定相似的三角形有()对.
A.0
B.3
C.2
D.1
答案:C4.P为△ABC内一点,且PA+3PB+7PC=0,则△PAC与△ABC面积的比为______.答案:(如图)分别延长
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,则由已知可得:PA+PB1+PC1=0,故点P是三角形
AB1C1
的重心,设三角形
AB1C1
的面积为
3S,则S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC与△ABC面积的比为:S7S7+S3+S21=311,故为:3115.设空间两个不同的单位向量
a=(x1,y1,0),
b=(x2,y2,0)与向量
c=(1,1,1)的夹角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°6.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.7.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A8.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C9.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D10.(理)下列以t为参数的参数方程中表示焦点在y轴上的椭圆的是()
A.
B.(a>b>0)
C.
D.
答案:C11.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.12.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()
A.
B.
C.
D.答案:A13.设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,则最小正整数n为4.故选C.14.设a=20.3,b=0.32,c=log20.3,则用“>”表示a,b,c的大小关系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故为:a>b>c15.在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是()A.
B.
C.
D.
答案:由题意作出图形如图:SO⊥平面ABC,SA与SO的平面与平面SBC垂直,球与平面SBC的切点在SD上,球与侧棱SA没有公共点所以正确的截面图形为B选项故选B.16.在茎叶图中,样本的中位数为______,众数为______.答案:由茎叶图可知样本数据共有6,出现在中间两位位的数据是20,24,所以样本的中位数是(20+24)÷2=22由茎叶图可知样本数据中出现最多的是12,样本的众数是12为:22,1217.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C18.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.答案:(1)设“中三等奖”为事件A,“中奖”为事件B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的结果两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1)两个小球号相加之和等于3的取法有4种:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等奖的概率为716;(2)两个小球号码相加之和等于3的取法有4种;(0,3),(1,2),(2,1),(3,0)两个小球相加之和等于4的取法有3种;(1,3),(2,2),(3,1)两个小球号码相加之和等于5的取法有2种:(2,3),(3,2)两个小球号码相加之和等于6的取法有1种:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中奖的概率为:58.19.点M的直角坐标为(-3,-1),则点M的极坐标为______.答案:∵M的直角坐标为(-3,-1),设M的极坐标为(ρ,θ),则ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的极坐标为(2,7π6).20.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.21.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范围是[-22,22].(10分)22.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A23.若一个圆锥的轴截面是边长为4cm的等边三角形,则这个圆锥的侧面积为______cm2.答案:如图所示:∵轴截面是边长为4等边三角形,∴OB=2,PB=4.圆锥的侧面积S=π×2×4=8πcm2.故为8π.24.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.25.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).26.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.27.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A28.下列命题:
①垂直于同一直线的两直线平行;
②垂直于同一直线的两平面平行;
③垂直于同一平面的两直线平行;
④垂直于同一平面的两平面平行;
其中正确的有()
A.③④
B.①②④
C.②③
D.②③④答案:C29.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x30.已知向量,,则“,λ∈R”成立的必要不充分条件是()
A.
B与方向相同
C.
D.答案:D31.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.32.设F1,F2是双曲线的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A33.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.34.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D35.点(1,2)到直线x+2y+5=0的距离为______.答案:点(1,2)到直线x+2y+5=0的距离为d=|1+2×2+5|12+22=25故为:2536.已知0<a<1,loga(1-x)<logax则()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C37.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B38.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.39.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.40.已知a=(1,2),则|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故为5.41.已知平面内的向量a,b,c两两所成的角相等,且|a|=2,|b|=3,|c|=5,则|a+b+c|的值的集合为______.答案:设平面内的向量a,b,c两两所成的角为α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,当α=0°时,|a+b+c|2=100,|a+b+c|=10,当α=120°时,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合为{7,10}.故为:{7,10}.42.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C43.若x~N(2,σ2),P(0<x<4)=0.8,则P(0<X<2)=______.答案:∵X~N(2,σ2),∴正态曲线关于x=2对称,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故为:0.4.44.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.45.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.
A.1
B.2
C.3
D.4答案:C46.用0,1,2,3组成没有重复数字的四位数,其中奇数有()
A.8个
B.10个
C.18个
D.24个答案:A47.下列关于算法的说法中正确的个数是()
①求解某一类问题的算法是唯一的;
②算法必须在有限步操作之后停止;
③算法的每一步操作必须是明确的,不能有歧义或模糊;
④算法执行后一定产生确定的结果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一类问题的算法不是唯一的,故①不正确;算法是有限步,结果明确性,②④是正确的.对于③,算法的每一步操作必须是明确的,不能有歧义或模糊是正确的;故③正确.∴关于算法的说法中正确的个数是3.故选C.48.已知a,b,c是正实数,且a+b+c=1,则的最小值为(
)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。49.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=150.某校在检查学生作业时,抽出每班学号尾数为4的学生作业进行检查,这里主要运用的抽样方法是()
A.分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样答案:D第2卷一.综合题(共50题)1.给出命题:
①线性回归分析就是由样本点去寻找一条贴近这些点的直线;
②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;
③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;
④线性相关关系就是两个变量间的函数关系.其中正确的命题是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D2.制作一个面积为1
m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长
l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.3.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-24.方程(x2-9)2(x2-y2)2=0表示的图形是()
A.4个点
B.2个点
C.1个点
D.四条直线答案:D5.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:226.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()
A.10
B.
C.
D.38答案:A7.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D8.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.9.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.10.已知
|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a11.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.12.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.13.某房间有四个门,甲要各进、出这个房间一次,不同的走法有多少种?()
A.12
B.7
C.16
D.64答案:C14.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.15.不等式的解集
.答案:;解析:略16.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
D.答案:C17.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足PN+12NM=0,PM•PF=0.
(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.答案:(Ⅰ)设N(x,y),则由PN+12NM=0,得P为MN的中点.∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM•PF=-x+y24=0,即y2=4x.∴动点N的轨迹E的方程y2=4x.(Ⅱ)设直线l的方程为y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.设A(x1,y1),B(x2,y2),则
y1+y2=4k,y1y2=-4.假设存在点C(m,0)满足条件,则CA=(x1-m,y1),CB=(x2-m,y2),∴CA•CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴关于m的方程m2-m(4k2+2)-3=0有解.∴假设成立,即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.18.(2的c的•湛江一模)已知⊙O的方程为x2+y2=c,则⊙O上的点到直线x=2+45ty=c-35t(t为参数)的距离的最大值为______.答案:∵直线x=2+45t一=1-35t(t为参数)∴3x+4一=10,∵⊙e的方程为x2+一2=1,圆心为(0,0),设直线3x+4一=k与圆相切,∴|k|5=1,∴k=±5,∴直线3x+4一=k与3x+4一=10,之间的距离就是⊙e上的点到直线的距离的最大值,∴d=|10±5|5,∴d的最大值是155=3,故为:3.19.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1220.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=0.2,则P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D21.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B22.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.23.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A24.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.25.已知M和N分别是四面体OABC的边OA,BC的中点,且,若=a,=b,=c,则用a,b,c表示为()
A.
B.
C.
D.
答案:B26.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D27.下列集合中,不同于另外三个集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即方程“x=0”.故选D.28.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-329.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.30.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()
A.
B.
C.
D.答案:D31.过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M,N向准线l作垂线,垂足分别为M1,N1,则∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C32.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()
A.
B.
C.
D.答案:A33.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()
A.
B.-
C.2
D.-2答案:B34.直线2x-y=7与直线3x+2y-7=0的交点是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A35.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.36.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A37.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.38.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.39.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()
A.10种
B.20种
C.25种
D.32种答案:D40.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.41.若关于x的方程x2-2ax+2+a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.
(1)方程两根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:设f(x)=x2-2ax+2+a,(1)∵两根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。42.若向量,则这两个向量的位置关系是___________。答案:垂直43.已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.答案:证明:假设函数f(x)的图象与x轴至少有两个交点,…(2分)(1)若f(x)的图象与x轴有两个交点,不妨设两个交点的横坐标分别为x1,x2,且x1<x2,…(5分)由已知,函数f(x)对其定义域内任意实数x1,x2,当x1<x2时,有f(x1)<f(x2).…(7分)又根据假设,x1,x2是函数f(x)的两个零点,所以,f(x1)=f(x2)=0,…(9分)这与f(x1)<f(x2)矛盾,…(10分)所以,函数f(x)的图象不可能与x轴有两个交点.…(11分)(2)若f(x)的图象与x轴交点多于两个,可同理推出矛盾,…(12分)所以,函数f(x)的图象不可能与x轴有两个以上交点.综上,函数f(x)的图象与x轴至多有一个交点…(14分)44.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3345.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:446.与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是______.答案:设M(x,y)为所求轨迹上任一点,则由题意知1+|y|=x2+y2,化简得x2=2|y|+1.因此与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是x2=2|y|+1.故为x2=2|y|+1.47.曲线xy=1的参数方程不可能是()
A.
B.
C.
D.答案:B48.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.49.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).50.将函数的图象F按向量平移后所得到的图象的解析式是,求向量.答案:向量解析:将函数的图象F按向量平移后所得到的图象的解析式是,求向量.第3卷一.综合题(共50题)1.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.2.方程组的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A3.在空间有三个向量AB、BC、CD,则AB+BC+CD=()A.ACB.ADC.BDD.0答案:如图:AB+BC+CD=AC+CD=AD.故选B.4.附加题选做题B.(矩阵与变换)
设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分5.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.6.某车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量(轴的直径要求为(20±0.5)mm),如何采用简单随机抽样方法抽取上述样本?答案:本题是一个简单抽样,∵100件轴的直径的全体是总体,将其中的100个个体编号00,01,02,…,99,利用随机数表来抽取样本的10个号码,可以从表中的第20行第3列的数开始,往右读数,得到10个号码如下:16,93,32,43,50,27,89,87,19,20将上述号码的轴在同一条件下测量直径.7.已知二元一次方程组a1x+b1y=c1a2x+b2y=c2的增广矩阵是1-11113,则此方程组的解是______.答案:由题意,方程组
x-
y=1x+y=3解之得x=2y=1故为x=2y=18.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了
100名学生,测试引体向上,结果如下表所示:
(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.
(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______
乙校______
(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)
(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些9.在下列四个命题中,正确的共有()
①坐标平面内的任何一条直线均有倾斜角和斜率;
②直线的倾斜角的取值范围是[0,π];
③若一条直线的斜率为tanα,则此直线的倾斜角为α;
④若一条直线的倾斜角为α,则此直线的斜率为tanα.
A.0个
B.1个
C.2个
D.3个答案:A10.如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向2km处,河流沿岸PQ(曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B11.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.12.每一吨铸铁成本y
(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.13.将椭圆x2+6y2-2x-12y-13=0按向量a平移,使中心与原点重合,则a的坐标是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:椭圆方程x2+6y2-2x-12y-13=0变形为:(x-1)2+6(y-1)2=20,则椭圆中心(1,1),即需按a=(-1,-1)平移,中心与原点重合.故选C.14.如图的曲线是指数函数y=ax的图象,已知a的值取,,,则相应于曲线①②③④的a的值依次为()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A15.选修4-2:矩阵与变换
已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为α1=11,属于特征值1的一个特征向量为α2=3-2.求矩阵A的逆矩阵.答案:由矩阵A属于特征值6的一个特征向量为α1=11,可得33cd11=611,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩阵是23-12-1312.16.下列图象中不能作为函数图象的是()A.
B.
C.
D.
答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.17.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.18.在下列4个命题中,是真命题的序号为()
①3≥3;
②100或50是10的倍数;
③有两个角是锐角的三角形是锐角三角形;
④等腰三角形至少有两个内角相等.
A.①
B.①②
C.①②③
D.①②④答案:D19.将n2个正整数1,2,3,…,n2填入n×n方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右表就是一个3阶幻方,可知f(3)=15,则f(4)=()
816357492A.32B.33C.34D.35答案:由等差数列得前n项和公式可得,所有数之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故选C.20.某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()
A.8
B.11
C.16
D.10答案:A21.设p,q是简单命题,则“p且q为真”是“p或q为真”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案:若“p且q为真”成立,则p,q全真,所以“p或q为真”成立若“p或q为真”则p,q全真或真q假或p假q真,所以“p且q为真”不一定成立∴“p且q为真”是“p或q为真”的充分不必要条件故选B22.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.23.甲、乙、丙、丁四位同学各自对A、B两个变量的线性相关性作试验,并用回归分析方法分别求得相关系数r与残差平方和m如表:
则哪位同学的实验结果体现A、B两个变量更强的线性相关性()
A.丙
B.乙
C.甲
D.丁答案:C24.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND25.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.26.下列说法不正确的是()A.圆柱侧面展开图是一个矩形B.圆锥的过轴的截面是等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面答案:圆柱的侧面展开图是一个矩形,A正确,因为母线长相等,得到圆锥的轴截面是一个等腰三角形,B正确,圆台平行于底面的截面是圆面,D正确,故选C.27.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C28.在吸烟与患肺病这两个分类变量的计算中,“若x2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思是指()
A.在100个吸烟的人中,必有99个人患肺病
B.有1%的可能性认为推理出现错误
C.若某人吸烟,则他有99%的可能性患有肺病
D.若某人患肺病,则99%是因为吸烟答案:B29.某学校准备调查高三年级学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样答案:学生会的同学随机对24名同学进行调查,是简单随机抽样,对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,是系统抽样,故选D30.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.31.在直径为4的圆内接矩形中,最大的面积是()
A.4
B.2
C.6
D.8答案:D32.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()
A.0
B.2
C.-2
D.1
答案:C33.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.34.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 082-2022 积分球光色综合测试系统校准规范
- 跨界合作助力品牌发展计划
- 社会治理背景下保安工作的创新实践计划
- 社交媒体的职业生涯路径计划
- 年度工作计划的可视化呈现方式
- 社区服务与社会责任教育计划
- 卫浴柜类相关行业投资方案
- TFT-LCD用偏光片相关项目投资计划书
- 雨水收集利用实施方案计划
- 货运保险合同三篇
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 在线客服质检述职报告
- JC/T2041-2020 聚氨酯灌浆材料
- 常州市2022-2023学年八年级上学期期末历史试卷(含答案解析)
- 粮油产品授权书
- 第3课 中古时期的欧洲(共51张PPT)
- 济南律师行业分析
- 山东大学答辩专属PPT模板
- 烟台汽车西站工程施工组织设计
- 妇科常用药物课件
- 2024年人口老龄化国情区情教育知识竞赛试题及答案
评论
0/150
提交评论