2023年河北能源职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年河北能源职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年河北能源职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年河北能源职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年河北能源职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年河北能源职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)2.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.3.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先将二进制数11111(2)化为十进制数,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框图对累加变量S和循环变量i的赋值S=1,i=1,i不满足判断框中的条件,执行S=1+2×S=1+2×1=3,i=1+1=2,i不满足条件,执行S=1+2×3=7,i=2+1=3,i不满足条件,执行S=1+2×7=15,i=3+1=4,i仍不满足条件,执行S=1+2×15=31,此时31是要输出的S值,说明i不满足判断框中的条件,由此可知,判断框中的条件应为i>4.故选D.4.已知随机变量X满足D(X)=2,则D(3X+2)=()

A.2

B.8

C.18

D.20答案:C5.某批n件产品的次品率为1%,现在从中任意地依次抽出2件进行检验,问:

(1)当n=100,1000,10000时,分别以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精确到0.00001)

(2)根据(1),谈谈你对超几何分布与二项分布关系的认识.答案:(1)当n=100时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.100件产品中次品数为1,正品数是99,从100件产品里抽2件,总的可能是C1002,次品的可能是C11C991.所以概率为C11C199C2100=0.2.当n=1000时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.1000件产品中次品数为10,正品数是990,从1000件产品里抽2件,总的可能是C10002,次品的可能是C101C9901.所以概率为是C110C1990C21000≈0.0198.如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.10000件产品中次品数为1000,正品数是9000,从10000件产品里抽2件,总的可能是C100002,次品的可能是C1001C99001.所以概率为C1100?C19900C210000≈0.0198.(2)对超几何分布与二项分布关系的认识:共同点:每次试验只有两种可能的结果:成功或失败.不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;

2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布.6.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.

(1)求动点P的轨迹C的方程;

(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.7.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()

A.35

B.25

C.15

D.7答案:C8.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:339.证明不等式的最适合的方法是()

A.综合法

B.分析法

C.间接证法

D.合情推理法答案:B10.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2511.正多面体只有______种,分别为______.答案:正多面体只有5种,分别为正四面体、正六面体、正八面体、正十二面体、正二十面体.故为:5,正四面体、正六面体、正八面体、正十二面体、正二十面体.12.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()

A.b都能被3整除

B.b都不能被3整除

C.b不都能被3整除

D.a不能被3整除答案:B13.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.14.将程序补充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶数”

ELSE

PRINT“x是奇数”

END

IF

END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=015.化简5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故为:2a-2b16.

若向量,满足||=||=2,与的夹角为60°,则|+|=()

A.

B.2

C.4

D.12答案:B17.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()

A.至少有一个黒球与都是红球

B.至少有一个黒球与都是黒球

C.至少有一个黒球与至少有1个红球

D.恰有1个黒球与恰有2个黒球答案:D18.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1,即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此,3a+1+3b+1+3c+1的最大值为18=3219.已知离心率为63的椭圆C:x2a

2+y2b2=1(a>b>0)经过点P(3,1).

(1)求椭圆C的方程;

(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若OM•ON=463tan∠MON(O为坐标原点),求直线l的方程.答案:(1)依题意,离心率为63的椭圆C:x2a

2+y2b2=1(a>b>0)经过点P(3,1).∴3a

2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故椭圆方程为x26+y22=1…(4分)(2)椭圆的左焦点为F1(-2,0),则直线l的方程可设为y=k(x+2)代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0设M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1•x2=12k2-63k2+1…(6分)由OM•ON=463tan∠MON得:|OM|•|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原点O到l的距离d=|2k|1+k2,则S△OMN=12|MN|d=6(1+k2)3k2+1•|2k|1+k2=236解得k=±33∴l的方程是y=±33(x+2)…(13分)(用其他方法解答参照给分)20.若不等式的解集,则实数=___________.答案:-421.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..22.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:1023.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A24.若A(-2,3),B(3,-2),C(,m)三点共线

则m的值为()

A.

B.-

C.-2

D.2答案:A25.已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C26.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A27.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(-1,1)到两直线x-y=0的距离是|2|2=2;圆心(-1,1)到直线x-y-4=0的距离是62=32≠2.故A错误.故选B.28.棱长为2的正方体ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D29.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.16B.112C.536D.19答案:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,∴根据古典概型的概率公式得到P=336=112,故选B.30.在参数方程所表示的曲线上有B、C两点,它们对应的参数值分别为t1、t2,则线段BC的中点M对应的参数值是()

A.

B.

C.

D.答案:B31.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.32.点(1,2)到原点的距离为()

A.1

B.5

C.

D.2答案:C33.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()

A.a、b至少有一个不为0

B.a、b至少有一个为0

C.a、b全不为0

D.a、b中只有一个为0答案:A34.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2

012”时,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要条件.故选A.35.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.36.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()

A.

B.

C.

D.答案:D37.命题“所以奇数的立方是奇数”的否定是()

A.所有奇数的立方不是奇数

B.不存在一个奇数,它的立方不是奇数

C.存在一个奇数,它的立方不是奇数

D.不存在一个奇数,它的立方是奇数答案:C38.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(

)。答案:(-4,-2)39.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)40.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).41.命题“三角形中最多只有一个内角是直角”的结论的否定是()

A.有两个内角是直角

B.有三个内角是直角

C.至少有两个内角是直角

D.没有一个内角是直角答案:C42.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0

且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.43.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取______人.答案:∵将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5,∵第5组抽出的号码为22,∴第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).故为:37;2044.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|

|b|=121•3=721.故为721.45.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.46.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.47.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制48.在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A49.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.50.直线x3+y4=1与x,y轴所围成的三角形的周长等于()A.6B.12C.24D.60答案:直线x3+y4=1与两坐标轴交于A(3,0),B(0,4),∴AB=5,∴△AOB的周长为:OA+OB+AB=3+4+5=12,故选B.第2卷一.综合题(共50题)1.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为()

A.A88

B.A55A44

C.A44A44

D.A85答案:B2.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了三组事件:

①至少有1个白球与至少有1个黄球;

②至少有1个黄球与都是黄球;

③恰有1个白球与恰有1个黄球.

其中互斥而不对立的事件共有()组.

A.0

B.1

C.2

D.3答案:A3.已知数列{an}前n项的和为Sn,且满足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用数学归纳法证明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)证明:(1)当n=1时,左边=s1=1,右边=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假设n=k(k∈N*)时结论成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1时,等式也成立.…(13分)根据(1)(2)可知对任意的正整数n∈N*都成立.…(14分)4.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.5.已知O、A、M、B为平面上四点,且,则()

A.点M在线段AB上

B.点B在线段AM上

C.点A在线段BM上

D.O、A、M、B四点一定共线答案:B6.在△ABC中,DE∥BC,DE将△ABC分成面积相等的两部分,那么DE:BC=()

A.1:2

B.1:3

C.

D.1:1答案:C7.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C8.若直线x=1的倾斜角为α,则α等于

______.答案:因为直线x=1与y轴平行,所以直线x=1的倾斜角为90°.故为:90°9.一圆形纸片的圆心为O点,Q是圆内异于O点的一定点,点A是圆周上一点,把纸片折叠使点A与点Q重合,然后抹平纸片,折痕CD与OA交于P点,当点A运动时点P的轨迹是______.

①圆

②双曲线

③抛物线

④椭圆

⑤线段

⑥射线.答案:由题意可得,CD是线段AQ的中垂线,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半径R,即点P到两个定点O、Q的距离之和等于定长R(R>|OQ|),由椭圆的定义可得,点P的轨迹为椭圆,故为④.10.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B11.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范围是[-22,22].(10分)12.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N+时,求证:A≥B.答案:证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得当x≥1时,x-1≥0,x2n-1-1≥0;当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.13.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()

A.0

B.

C.

D.答案:B14.一个口袋中有红球3个,白球4个.

(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;

(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.15.某批n件产品的次品率为1%,现在从中任意地依次抽出2件进行检验,问:

(1)当n=100,1000,10000时,分别以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精确到0.00001)

(2)根据(1),谈谈你对超几何分布与二项分布关系的认识.答案:(1)当n=100时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.100件产品中次品数为1,正品数是99,从100件产品里抽2件,总的可能是C1002,次品的可能是C11C991.所以概率为C11C199C2100=0.2.当n=1000时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.1000件产品中次品数为10,正品数是990,从1000件产品里抽2件,总的可能是C10002,次品的可能是C101C9901.所以概率为是C110C1990C21000≈0.0198.如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.10000件产品中次品数为1000,正品数是9000,从10000件产品里抽2件,总的可能是C100002,次品的可能是C1001C99001.所以概率为C1100?C19900C210000≈0.0198.(2)对超几何分布与二项分布关系的认识:共同点:每次试验只有两种可能的结果:成功或失败.不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;

2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布.16.设函数f(x)的定义域为R,如果对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故为:3217.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B18.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D19.求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2(r>0)由题意有:b=-4a|a+b+1|2=rb+2a-3•(-1)=-1解之得a=1b=-4r=22∴所求圆的方程为(x-1)2+(y+4)2=820.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),则a•(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a•(b+c)=(2,-3,1)•(2,2,5)=4-6+5=3.故为:3.21.①某寻呼台一小时内收到的寻呼次数X;

②长江上某水文站观察到一天中的水位X;

③某超市一天中的顾客量X.

其中的X是连续型随机变量的是()

A.①

B.②

C.③

D.①②③答案:B22.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有______种.(用数字作答)答案:4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻,所以第一步应先取两个老师且绑定有C23×A22=6种方法,第二步将四名学生全排列,共有4!=24种方法,第三步将绑定的两位老师与剩下的一位老师看作两个元素,插入四个学生隔开的五个空中,共有A25=20种方法故总的站法有6×24×20=2880种故为288023.过点P(0,-2)的双曲线C的一个焦点与抛物线x2=-16y的焦点相同,则双曲线C的标准方程是()

A.

B.

C.

D.答案:C24.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)25.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).

(I)将曲线C的参数方程转化为普通方程;

(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.26.已知函数y=与y=ax2+bx,则下列图象正确的是(

)

A.

B.

C.

D.

答案:C27.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.

某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别PM2.5浓度

(微克/立方米)频数(天)频率

第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;

(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)

设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.

…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.

…(6分)所以所求的概率P=610=35.

…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.

…(12分)28.用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是()

A.三角形的内角至少有一个钝角

B.三角形的内角至少有两个钝角

C.三角形的内角没有一个钝角

D.三角形的内角没有一个钝角或至少有两个钝角答案:B29.若曲线C的极坐标方程为

ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y30.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C31.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.32.若正四面体ABCD的棱长为1,M是AB的中点,则MC

•MD

=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC

•MD

=CM⋅DM=14.故为:

1

4

.33.已知f(x)=,则不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}34.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)35.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α36.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.37.若一元二次方程x2+(a-1)x+1-a2=0有两个正实数根,则a的取值范围是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C38.抛物线x=14ay2的焦点坐标为()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:抛物线x=14ay2可化为:y2=4ax,它的焦点坐标是(a,0)故选B.39.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:640.根据一组数据判断是否线性相关时,应选用()

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A41.下列在曲线上的点是()

A.

B.

C.

D.答案:D42.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.43.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0

(c>0)之间的距离为,则等于()

A.-2

B.-6

C..2

D.0答案:A44.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或13245.在空间直角坐标系中,O为坐标原点,设A(,,),B(,,0),C(

,,),则(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C46.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A47.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.48.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=()A.43B.8C.83D.16答案:抛物线的焦点F(2,0),准线方程为x=-2,直线AF的方程为y=-3(x-2),所以点A(-2,43)、P(6,43),从而|PF|=6+2=8故选B.49.已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.

(1)试用向量方法证明E、F、G、H四点共面;

(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.答案:(1)证明略(2)平面EFGH∥平面ABCD解析:(1)

分别延长PE、PF、PG、PH交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四点共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG与EF交于E点,∴平面EFGH∥平面ABCD.50.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C第3卷一.综合题(共50题)1.已知向量a,b满足|a|=2,|b|=3,|2a+b|=则a与b的夹角为()

A.30°

B.45°

C.60°

D.90°答案:C2.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.3.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a=1

C.a>1

D.以上均不对答案:C4.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:

比赛项目

票价(元/场)

篮球

1000

足球

800

乒乓球

500

若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为

A.2

B.3

C.4

D.5

答案:D5.设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为______.答案:焦点坐标(a4,0),|0F|=a4,直线的点斜式方程y=2(x-a4)在y轴的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故为:y2=8x6.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.

(1)求双曲线C的方程;

(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.

(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在7.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.8.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.9.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3

所以

k=5故为:3或5.10.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()

A.1

B.2

C.

D.

答案:A11.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)12.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B13.如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D14.若直线的参数方程为,则直线的斜率为(

)A.B.C.D.答案:D15.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.

(1)求l1的斜率k1的取值范围;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).16.下图是由哪个平面图形旋转得到的(

)答案:A17.若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是()

A.经过两点O1,O2的直线

B.线段O1O2的中垂线

C.两圆公共弦所在的直线

D.一条直线且该直线上的点到两圆的切线长相等答案:D18.已知P(B|A)=,P(A)=,则P(AB)=()

A.

B.

C.

D.答案:D19.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.20.直线和圆交于两点,则的中点

坐标为(

)A.B.C.D.答案:D解析:,得,中点为21.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.22.已知一个几何体是由上下两部分构成的一个组合体,其三视图如图所示,则这个组合体的上下两部分分别是(

)答案:A23.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x

(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x

(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x

(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x

(x≥0)是同一个函数,具有相同的图象,故选B.24.若a>0,b>0,2a+3b=1,则ab的最大值为______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故为12425.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()

A.()

B.()

C.()

D.()答案:D26.已知平行直线l1:x-y+1=0与l2:x-y+3=0,求l1与l2间的距离.答案:∵已知平行直线l1:x-y+1=0与l2:x-y+3=0,则l1与l2间的距离d=|3-1|2=2.27.不等式﹣2x+1>0的解集是(

).答案:{x|x<}28.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12

时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.29.下列语句不属于基本算法语句的是()

A.赋值语句

B.运算语句

C.条件语句

D.循环语句答案:B30.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.31.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()

A.

B.

C.

D.答案:D32.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故选A.33.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故为:i.34.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______

答案:(1)游戏盘的中奖概率为

38,(2)游戏盘的中奖概率为

14,(3)游戏盘的中奖概率为

26=13,(4)游戏盘的中奖概率为

13,(1)游戏盘的中奖概率最大.故为:(1).35.若|x-4|+|x+5|>a对于x∈R均成立,则a的取值范围为______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值为9.再由题意可得,当a<9时,不等式对x∈R均成立.故为(-∞,9).36.设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()

A.1

B.4

C.2

D.不能确定答案:B37.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为______.答案:∵A(2,3)是直线a1x+b1y+1=0和a2x+b2y+1=0的公共点,∴2a1+3b1+1=0,且2a2+3b2+1=0,即两点P1(a1,b1),P2(a2,b2)的坐标都适合方程2x+3y+1=0,∴两点(a1,b1)和(a2,b2)都在同一条直线2x+3y+1=0上,故点(a1,b1)和(a2,b2)所确定的直线方程是2x+3y+1=0,故为:2x+3y+1=0.38.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:539.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论