版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年河北交通职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是
______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.2.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C3.如图,若直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3三个数从小到大的顺序依次是______.答案:由函数的图象可知直线l1,l2,l3的斜率满足k1<0<k3<k2所以k1,k2,k3三个数从小到大的顺序依次是k1,k3,k2故为:k1,k3,k2.4.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(
)
A.
B.
C.
D.,0∈M答案:A5.椭圆的两个焦点坐标是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B6.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.7.抛物线y2=4x的焦点坐标是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C8.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(
)
A.2
B.1
C.0
D.-1答案:D9.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7210.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:7611.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2
,
π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2
,
π6)到直线ρsinθ=2的距离1,故为:1.12.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B13.已知、分别是与x轴、y轴方向相同的单位向量,且=-3+6,=-6+4,=--6,则一定共线的三点是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C14.一圆形纸片的圆心为O点,Q是圆内异于O点的一定点,点A是圆周上一点,把纸片折叠使点A与点Q重合,然后抹平纸片,折痕CD与OA交于P点,当点A运动时点P的轨迹是______.
①圆
②双曲线
③抛物线
④椭圆
⑤线段
⑥射线.答案:由题意可得,CD是线段AQ的中垂线,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半径R,即点P到两个定点O、Q的距离之和等于定长R(R>|OQ|),由椭圆的定义可得,点P的轨迹为椭圆,故为④.15.已知0≤θ<2π,复数icosθ+isinθ>0,则θ的值是()A.π2B.3π2C.(0,π)内的任意值D.(0,π2)∪(3π2,2π)内的任意值答案:复数icosθ+isinθ>0,可得icosθ+sinθ>0,因为0≤θ<2π,所以θ=π2.故选A.16.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①
当m=0时,-1<0,不等式成立;②
当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.17.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.18.数据a1,a2,a3,…,an的方差为σ2,则数据2a1+3,2a2+3,2a3+3,…,2an+3的方差为______.答案:∵数据a1,a2,a3,…,an的方差为σ2,∴数据2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故为:4σ2.19.复数1+i(i为虚数单位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故选A.20.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.21.(1+2x)7的展开式中第4项的系数是______
(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.22.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:3223.直线y=k(x-2)+3必过定点,该定点的坐标为()
A.(3,2)
B.(2,3)
C.(2,-3)
D.(-2,3)答案:B24.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()
A.
B.3
C.
D.答案:A25.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:226.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20327.在极坐标系中,若点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,则ρ0=______.答案:∵点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,∴ρ0=2cosπ3.∴ρ0=2×12=1.故为:1.28.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线右支C.一条射线D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根据双曲线的定义,∴点P是以M(-2,0),N(2,0)为两焦点的双曲线的右支.故选B.29.设求证:答案:证明见解析解析:证明:∵
∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。30.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.
①上海地区面积的70%至80%将降雨;
②上海地区下雨的时间在16.8小时至19.2%小时之间;
③上海地区在相似的气候条件下有70%至80%的日子是下雨的;
④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③31.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.32.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.33.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.34.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.35.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.36.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B37.下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2个向量的坐标对应成比例,0-2=01,所以,这2个向量是共线向量,故不能作为基底.B、中的2个向量的坐标对应成比例,46=69,所以,这2个向量是共线向量,故不能作为基底.C中的2个向量的坐标对应不成比例,2-6≠-54,所以,这2个向量不是共线向量,故可以作为基底.D、中的2个向量的坐标对应成比例,212=-3-34,这2个向量是共线向量,故不能作为基底.故选C.38.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()
A.3,2
B.2,3
C.2,30
D.30,2答案:A39.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是______.答案:每个个体被抽到的概率是
20240=112,那么从甲部门抽取的员工人数是60×112=5,故为:5.40.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0
B=φA(2)当a=-1时△=0
B={0}A(3)当a>-1时△>0
要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=141.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.42.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.43.在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.44.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.45.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D46.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2247.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为1348.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.49.Rt△ABC中,CD是斜边AB上的高,该图中只有x个三角形与△ABC相似,则x的值为()A.1B.2C.3D.4答案:∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD△ACD∽CBD△ABC∽CBD所以有三对相似三角形,该图中只有2个三角形与△ABC相似.故选B.50.执行如图所示的程序框图,输出的M的值为()
A.17
B.53
C.161
D.485
答案:C第2卷一.综合题(共50题)1.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B2.如图,PA,PB切⊙O于
A,B两点,AC⊥PB,且与⊙O相交于
D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°3.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.4.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()
A.
B.
C.
D.答案:D5.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.6.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()
A.a=0,b=1
B.a=1,b=0
C.a=1,b=1
D.a=,b=-1答案:B7.在区间[0,1]产生的随机数x1,转化为[-1,3]上的均匀随机数x,实施的变换为()
A.x=3x1-1
B.x=3x1+1
C.x=4x1-1
D.x=4x1+1答案:C8.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.9.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
83
92
12
06
76
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38
15
51
00
13
42
99
66
02
79
54.答案:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故为:301,637,169,55510.已知在一场比赛中,甲运动员赢乙、丙的概率分别为0.8,0.7,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是______.答案:根据题意,甲取得一胜一负包含两种情况,甲胜乙负丙,概率为:0.8×0.3=0.24;甲胜丙负乙,概率为:0.2×0.7=0.14;∴甲取得一胜一负的概率为0.24+0.14=0.38故为0.3811.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C12.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.13.如果:在10进制中2004=4×100+0×101+0×102+2×103,那么类比:在5进制中数码2004折合成十进制为()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故选B.14.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.15.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(
)
A.6
B.2
C.-2
D.或-2答案:D16.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C17.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A18.如图,以1×3方格纸中的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?
答案:模为1的向量;模为2的向量;模为3的向量;模为2的向量;模为5的向量;模为10的向量共有6个模,进而分析方向,正方形的边对应的向量共有四个方向,边长为1的正方形的对角线对应的向量共四个方向;1×2的矩形的对角线对应的向量共四个方向;1×3的矩形对角线对应的向量共有四个方向共有16个方向19.2008年北京奥运会期间,计划将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540B.300C.150D.180答案:将5个人分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53?A33种分法,分成2、2、1时,有C25C23A22?A33种分法,所以共有C53?A33+C25C23A22?A33=150种分法,故选C.20.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.答案:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0.依题意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,则ξ的分布列为∴所求期望值为Eξ=14(1000+800+600)+116(500+400+300+0)=675元.21.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.22.椭圆的两个焦点坐标是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B23.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.24.设随机变量x~B(n,p),若Ex=2.4,Dx=1.44则()
A.n=4,p=0.6
B.n=6,p=0.4
C.n=8,p=0.3
D.n=24,p=0.1答案:B25.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ等于()
A.
B.
C.
D.答案:D26.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.27.命题“对于正数a,若a>1,则lg
a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4答案:原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.故选D.28.选修4-5;不等式选讲.
当n>2时,求证:logn(n-1)logn(n+1)<1.答案:∵n>2,∴log(n-1)n>0,log(n+1)n>0,且log(n-1)n≠log(n+1)n,∴log(n-1)n×log(n+1)n<(log(n-1)n+log(n+1)n2)2=(log(n2-1)n2)2<(logn2n2)2=(22)2=1,∴当n>2时,logn(n-1)logn(n+1)<1.29.以下四组向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B30.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在31.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C32.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.33.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为
______.答案:根据题意:黄豆落在阴影部分的概率是138300矩形的面积为10,设阴影部分的面积为s则有s10=138300∴s=235故为:23534.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得
a=12.综上,a的值为12或32故选C.35.已知函数f(x)=x+3x+1(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤(3-1)n2n-1;
(Ⅱ)证明Sn<233.答案:证明:(Ⅰ)当x≥0时,f(x)=1+2x+1≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤(3-1)n2n-1.(1)当n=1时,b1=3-1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)•1-(3-12)n1-3-12<(3-1)•11-3-12=233.故对任意n∈N*,Sn<233.36.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.37.过A(-2,3),B(2,1)两点的直线的斜率是()
A.
B.
C.-2
D.2答案:B38.若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真D.不能判断q的真假答案:因为“?p”为假,所以p为真;又因为“p∧q”为假,所以q为假.对于A,p或q为真,对于C,D,显然错,故选B.39.用反证法证明命题“如果a>b,那么a3>b3“时,下列假设正确的是()
A.a3<b3
B.a3<b3或a3=b3
C.a3<b3且a3=b3
D.a3>b3答案:B40.圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是
______,过这个圆外一点P(2,3)的该圆的切线方程是
______;答案:∵圆x=1+cosθy=1+sinθ(θ为参数)消去参数θ,得:(x-1)2+(y-1)2=1,即圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是(x-1)2+(y-1)2=1;∵这个圆外一点P(2,3)的该圆的切线,当切线斜率不存在时,显然x=2符合题意;当切线斜率存在时,设切线方程为:y-3=k(x-2),由圆心到切线的距离等于半径,得|k-1+3-2k|k2+1=
1,解得:k=34,故切线方程为:3x-4y+6=0.故为:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.41.把下列命题写成“若p,则q”的形式,并指出条件与结论.
(1)相似三角形的对应角相等;
(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.42.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).43.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D44.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()
A向东南航行km
B.向东南航行2km
C.向东北航行km
D.向东北航行2km答案:A45.若数列{an}(n∈N+)为等差数列,则数列bn=a1+a2+a3+…+ann(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列.答案:从商类比开方,从和类比到积,可得如下结论:nC1C2C3Cn故为:nC1C2C3Cn46.求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.答案:证明:假设函数y=f(x)的图象与x轴有两个交点…(2分)设交点的横坐标分别为x1,x2,且x1<x2.因为函数y=f(x)在实数集上单调递减所以f(x1)>f(x2),…(6分)这与f(x1)=f(x2)=0矛盾.所以假设不成立.
…(12分)故原命题成立.…(14分)47.直线l只经过第一、三、四象限,则直线l的斜率k()
A.大于零
B.小于零
C.大于零或小于零
D.以上结论都有可能答案:A48.用演绎法证明y=x2是增函数时的大前提是______.答案:∵证明y=x2是增函数时,依据的原理就是增函数的定义,∴用演绎法证明y=x2是增函数时的大前提是:增函数的定义故填增函数的定义49.方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是
______.答案:椭圆方程化为x22+y22k=1.焦点在y轴上,则2k>2,即k<1.又k>0,∴0<k<1.故为:0<k<150.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)第3卷一.综合题(共50题)1.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.2.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.3.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.4.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)5.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C6.已知△ABC是边长为4的正三角形,D、P是△ABC内部两点,且满足AD=14(AB+AC),AP=AD+18BC,则△APD的面积为______.答案:取BC的中点E,连接AE,根据△ABC是边长为4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),则点D为AE的中点,AD=3取AF=18BC,以AD,AF为边作平行四边形,可知AP=AD+18BC=AD+AF而△APD为直角三角形,AF=12∴△APD的面积为12×12×3=34故为:347.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是(
)
A.40
B.39
C.38
D.37答案:B8.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C9.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5010.当太阳光线与水平面的倾斜角为60°时,要使一根长为2m的细杆的影子最长,则细杆与水平地面所成的角为()
A.15°
B.30°
C.45°
D.60°答案:B11.设空间两个不同的单位向量
a=(x1,y1,0),
b=(x2,y2,0)与向量
c=(1,1,1)的夹角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°12.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.13.已知函数y=与y=ax2+bx,则下列图象正确的是(
)
A.
B.
C.
D.
答案:C14.当a≠0时,y=ax+b和y=bax的图象只可能是()
A.
B.
C.
D.
答案:A15.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:
(1)恰有一人能破译的概率;(2)至多有一人破译的概率;
(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.16.把下列直角坐标方程或极坐标方程进行互化:
(1)ρ(2cosϑ-3sinϑ)+1=0
(2)x2+y2-4x=0.答案:(1)将原极坐标方程ρ(2cosθ-3sinθ)+1=0展开后化为:2ρcosθ-3ρsinθ+1=0,化成直角坐标方程为:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲线的直角坐标方程为x2+y2-4x=0,可得极坐标方程ρ2-4ρcosθ=0,即ρ=4cosθ.17.函数f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,当x∈[-2,2]时,求f(x)的最值,并说明当f(x)取最值时的x的值;
(3)若f(x)≥a恒成立,求a的取值范围.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴-a2=1即a=-2(2)a=-2时,函数f(x)=x2-2x+3在区间[-2,1]上递减,在区间[1,2]上递增,∴当x=-2时,fmax(x)=f(-2)=11当x=1时,fmin(x)=f(1)=2(3)∵x∈R时,有x2+ax+3-a≥0恒成立,须△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.18.不等式log32x-log3x2-3>0的解集为()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D19.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.20.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:421.已知点P(x,y)在曲线x=2+cosθy=2sinθ(θ为参数),则ω=3x+2y的最大值为______.答案:由题意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴当sin(θ+?)=1时,ω=3x+2y的最大值为
11故为11.22.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.23.正方体ABCD-A1B1C1D1的棱长为1,点M是棱AB的中点,点P是平面ABCD上的一动点,且点P到直线A1D1的距离两倍的平方比到点M的距离的平方大4,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线答案:在平面ABCD上,以AD为x轴,以AB为y轴建立平面直角坐标系,则M(,12,0),设P(x,y)则|MP|2=y2+(x-12)2点P到直线A1D1的距离为x2+1由题意得4(x2+1)=
y2+(x-12)2+4即3(x+12)2-y2=74选C24.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)25.若不等式对一切x恒成立,求实数m的范围.答案:见解析解析:∵x2-8x+20=(x-4)2+4>0,∴只须mx2-mx-1<0恒成立,即可:①
当m=0时,-1<0,不等式成立;②
当m≠0时,则须,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.26.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).27.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为()A.43B.4C.42D.8+23答案:由两个向量数量积的几何意义可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故选B28.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是
______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1229.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()
A.-1
B.0
C.2
D.-2答案:B30.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x31.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44902-2024木工机床安全共同性要求
- 2024年低楼层房出租合同范本
- 2024年代理桶装水合同范本
- 2024年冲床买卖二手合同范本
- 上肢截肢康复治疗方案
- 关于护理教学方法
- 【高中数学课件】组合数的两个性质
- 2024至2030年中国硅酸根自动监测仪数据监测研究报告
- 2024至2030年中国陶瓷电容编带行业投资前景及策略咨询研究报告
- 2023年汽车隔音材料项目评估分析报告
- 主体验收施工单位发言稿
- 四川大学法学院本科生国际经济法课件
- 2023年四川天府银行校园招聘笔试模拟试题及答案解析
- 铸牢中华民族共同体意识学习PPT
- 酒店工程管理的意义
- 做一个有温度护士课件
- 全屋定制家具订单管理流程图课件
- 眼科器械的机械清洗课件
- 汽车维修质量管理培训教材课件
- 实验室生物安全组织框架
- 超星尔雅学习通《海上丝绸之路》章节测试附答案
评论
0/150
提交评论