版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年江苏城市职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:102.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()
A.0
B.
C.
D.答案:B3.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.4.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.5.在甲、乙两个盒子里分别装有标号为1、2、3、4的四个小球,现从甲、乙两个盒子里各取出1个小球,每个小球被取出的可能性相等.
(1)求取出的两个小球上标号为相邻整数的概率;
(2)求取出的两个小球上标号之和能被3整除的概率;
(3)求取出的两个小球上标号之和大于5整除的概率.答案:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)总数为16种.(1)其中取出的两个小球上标号为相邻整数的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种故取出的两个小球上标号为相邻整数的概率P=38;(2)其中取出的两个小球上标号之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5种故取出的两个小球上标号之和能被3整除的概率为516;(3)其中取出的两个小球上标号之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种故取出的两个小球上标号之和大于5的概率P=386.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a•(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a•(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).7.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D8.参数方程(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C9.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根据样本的频率分布估计,大于或等于31.5的数据约占()A.211B.13C.12D.23答案:根据所给的数据的分组和各组的频数知道,大于或等于31.5的数据有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本组数据共有66个,∴大于或等于31.5的数据约占2266=13,故选B10.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,设(α,β∈R),则α+β的最大值等于
()
A.
B.
C.
D.1
答案:B11.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20312.某处有供水龙头5个,调查表明每个水龙头被打开的可能性为,随机变量ξ表示同时被打开的水龙头的个数,则P(ξ=3)为A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本题考查n次独立重复试验中,恰好发生k次的概率.对5个水龙头的处理可视为做5次试验,每次试验有2种可能结果:打开或未打开,相应的概率为0.1或1-0.1="0.9."根据题意ξ~B(5,0.1),从而P(ξ=3)=(0.1)3(0.9)2=0.0081.13.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.14.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C15.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.16.若随机变量X的概率分布如下表,则表中a的值为()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D17.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.18.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()
A.2.44
B.3.376
C.2.376
D.2.4答案:C19.(1)在数轴上求一点的坐标,使它到点A(9)与到点B(-15)的距离相等;
(2)在数轴上求一点的坐标,使它到点A(3)的距离是它到点B(-9)的距离的2倍.答案:(1)设该点为M(x),根据题意,得A、M两点间的距离为d(A,M)=|x-9|,B、M两点间的距离为d(M,B)=|-15-x|,结合题意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐标为-3故所求点的坐标为-3.(2)设该点为N(x'),则A、N两点间的距离为d(A,N)=|x'-3|,B、N两点间的距离为d(N,B)=|-9-x'|,根据题意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求点的坐标是-21或-5.20.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()
A.
B.
C.
D.答案:D21.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(
)
A.
B.
C.
D.答案:D22.抛物线y=x2的焦点坐标是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C23.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.24.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°25.已知△ABC的三个顶点A(-2,-1)、B(1,3)、C(2,2),则△ABC的重心坐标为______.答案:设△ABC的重心坐标为(x,y),则有三角形的重心坐标公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐标为(13,43),故为(13,43).26.已知M为椭圆x2a2+y2b2=1(a>b>0)上的动点,F1、F2为椭圆焦点,延长F2M至点B,则ρF1MB的外角的平分线为MN,过点F1作
F1Q⊥MN,垂足为Q,当点M在椭圆上运动时,则点Q的轨迹方程是______.答案:点F1关于∠F1MF2的外角平分线MQ的对称点N在直线F1M的延长线上,故|F1N|=|PF1|+|PF2|=2a(椭圆长轴长),又OQ是△F2F1N的中位线,故|OQ|=a,点Q的轨迹是以原点为圆心,a为半径的圆,点Q的轨迹方程是x2+y2=a2故为:x2+y2=a227.将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()
A.6种
B.12种
C.18种
D.24种
答案:A28.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填12429.
选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.30.已知A、B、M三点不共线,对于平面ABM外的任意一点O,确定在下列条件下,点P是否与A、B、M一定共面,答案:解:为共面向量,∴P与A、B、M共面,,根据空间向量共面的推论,P位于平面ABM内的充要条件是,∴P与A、B、M不共面.31.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.32.设a,b,c是三个不共面的向量,现在从①a+b;②a-b;③a+c;④b+c;⑤a+b+c中选出使其与a,b构成空间的一个基底,则可以选择的向量为______.答案:构成基底只要三向量不共面即可,这里只要含有向量c即可,故③④⑤都是可以选择的.故为:③④⑤(不唯一,也可以有其它的选择)33.在下列4个命题中,是真命题的序号为()
①3≥3;
②100或50是10的倍数;
③有两个角是锐角的三角形是锐角三角形;
④等腰三角形至少有两个内角相等.
A.①
B.①②
C.①②③
D.①②④答案:D34.设A(1,-1,1),B(3,1,5),则线段AB的中点在空间直角坐标系中的位置是()
A.在y轴上
B.在xOy面内
C.在xOz面内
D.在yOz面内答案:C35.(文)若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则实数p的值是______.答案:∵x26+y22=1
中a2=6,b2=2,∴c2=4,c=2∴右焦点坐标为(2,0)∵抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合∴抛物线y2=2px中p=4故为436.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p37.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.38.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,则以三条边长分别为|a|,|b|,|c|所构成的三角形的形状是______.答案:直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,即|c|a2+b2>
1即|c|2>a2+b2三角形是钝角三角形.故为:钝角三角形.39.否定结论“至少有一个解”的说法中,正确的是()
A.至多有一个解
B.至少有两个解
C.恰有一个解
D.没有解答案:D40.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a=1
C.a>1
D.以上均不对答案:C41.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.42.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D43.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.44.已知函数f
(x)=logx,则方程()|x|=|f(x)|的实根个数是()
A.1
B.2
C.3
D.2006答案:B45.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.46.构成多面体的面最少是()
A.三个
B.四个
C.五个
D.六个答案:B47.若关于的不等式的解集是,则的值为_______答案:-2解析:原不等式,结合题意画出图可知.48.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.49.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.答案:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是AE=12AB=3.(10分)50.参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=1第2卷一.综合题(共50题)1.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:3122.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B3.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C4.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。5.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A6.已知离心率为63的椭圆C:x2a
2+y2b2=1(a>b>0)经过点P(3,1).
(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若OM•ON=463tan∠MON(O为坐标原点),求直线l的方程.答案:(1)依题意,离心率为63的椭圆C:x2a
2+y2b2=1(a>b>0)经过点P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故椭圆方程为x26+y22=1…(4分)(2)椭圆的左焦点为F1(-2,0),则直线l的方程可设为y=k(x+2)代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0设M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1•x2=12k2-63k2+1…(6分)由OM•ON=463tan∠MON得:|OM|•|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原点O到l的距离d=|2k|1+k2,则S△OMN=12|MN|d=6(1+k2)3k2+1•|2k|1+k2=236解得k=±33∴l的方程是y=±33(x+2)…(13分)(用其他方法解答参照给分)7.设a、b、c均为正数.求证:≥.答案:证明略解析:证明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,则∴左边=≥=.∴原不等式成立.8.直线x=-2+ty=1-t(t为参数)被圆x=2+2cosθy=-1+2sinθ(θ为参数)所截得的弦长为______.答案:∵圆x=2+2cosθy=-1+2sinθ(θ为参数),消去θ可得,(x-2)2+(y+1)2=4,∵直线x=-2+ty=1-t(t为参数),∴x+y=-1,圆心为(2,-1),设圆心到直线的距离为d=|2-1+1|2=2,圆的半径为2∴截得的弦长为222-(2)2=22,故为22.9.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.10.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.11.设是的相反向量,则下列说法一定错误的是()
A.∥
B.与的长度相等
C.是的相反向量
D.与一定不相等答案:D12.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是()
A.-
B.-6
C.6
D.答案:C13.若与垂直,则k的值是()
A.2
B.1
C.0
D.答案:D14.已知e1,e2是夹角为60°的单位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a•b;
(2)求a与b的夹角<a,b>.答案:(1)求a•b=(2e1+e2)•
(-3e1+2e2)=
-6e12+e1
•e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1•e2+e22=7同样地求得|b|=7.所以cos<a,b>=a•b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.15.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1616.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:017.数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).
(Ⅰ)用数学归纳法证明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….答案:(Ⅰ)证明:①当n=2时,a2=2≥2,不等式成立.②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.这就是说,当n=k+1时不等式成立.根据(1)、(2)可知:ak≥2对所有n≥2成立.(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)两边取对数并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式从1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12•1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).18.设U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},现有一质点随机落入区域U中,则质点落入M中的概率是()A.2πB.12πC.1πD.2π答案:满足条件U={(x,y)|x2+y2≤1,x,y∈R}的圆,如下图示:其中满足条件M={(x,y)|x|+|y|≤1,x,y∈R}的平面区域如图中阴影所示:则圆的面积S圆=π阴影部分的面积S阴影=2故质点落入M中的概率概率P=S阴影S正方形=2π故选D19.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(
)
A.-2
B.-1
C.0
D.1答案:B20.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:4721.若直线的参数方程为,则直线的斜率为(
)A.B.C.D.答案:D22.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为423.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.24.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C25.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(
)
A.
B.
C.
D.
答案:D26.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.27.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.28.在空间有三个向量AB、BC、CD,则AB+BC+CD=()A.ACB.ADC.BDD.0答案:如图:AB+BC+CD=AC+CD=AD.故选B.29.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.30.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一个点,若它停在奇数点上,则下次只能跳一个点;若停在偶数点上,则跳两个点.该青蛙从“5”这点起跳,经2
011次跳后它停在的点对应的数字是______.答案:起始点为5,按照规则,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循环出现,而2011=3×670+1.故经2011次跳后停在的点是1.故为131.在数列{an}中,a1=1,an+1=2a
n2+an(n∈N*),
(1)计算a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.答案:(1):a2=2a
12+a1=23,a3=2a
22+a2=24,a4=2a
32+a3=25,(2):猜想an=2n+1下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.②假设n=k时命题成立,即ak=2k+1当n=k+1时ak+1=2a
k2+ak=2×2k+12+2k+1(把假设作为条件代入)=42(k+1)+2=2(k+1)+1由①②知命题对一切n∈N*均成立.32.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.33.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.34.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B35.若E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,证明:四边形EFGH是平行四边形.答案:证明:∵E,F,G,H分别为空间四边形ABCD四边AB,BC,CD,DA的中点,∴EF是△ABC的中位线,∴EF∥AC,且EF=12AC.同理可证,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四边形EFGH是平行四边形.36.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.37.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.38.已知随机变量ξ服从正态分布N(2,0.2),P(ξ≤4)=0.84,则P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵随机变量ξ服从正态分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故选A.39.设四边形ABCD中,有且,则这个四边形是()
A.平行四边形
B.矩形
C.等腰梯形
D.菱形答案:C40.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.41.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110B.120C.140D.1120答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33?A66?A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:P=A33?A66?A27A1010=120.故选B.42.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()
A.40
B.30
C.20
D.12答案:A43.种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率为p(1-q)+(1-p)q=p+q-2pq。44.已知复数z的模为1,且复数z的实部为13,则复数z的虚部为______.答案:设复数的虚部是b,∵复数z的模为1,且复数z的实部为13,∴(13)2+b2=1,∴b2=89,∴b=±223故为:±22345.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B46.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.47.(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.48.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;
(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).49.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()
A.3
B.
C.
D.4答案:B50.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.第3卷一.综合题(共50题)1.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切2.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函数y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正确;B、∵f(x)=1x,∴x≠0,故B错误;C、f(x)=x3,其定义域为R,故C错误;D、f(x)=ex,其定义域为R,故D错误;故选A.3.已知有如下两段程序:
问:程序1运行的结果为______.程序2运行的结果为______.
答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.4.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;
(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).5.如果命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是()
A.曲线C是方程f(x,y)=0的曲线
B.方程f(x,y)=0的每一组解对应的点都在曲线C上
C.不满足方程f(x,y)=0的点(x,y)不在曲线C上
D.方程f(x,y)=0是曲线C的方程答案:C6.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C7.已知e1,e2是夹角为60°的单位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a•b;
(2)求a与b的夹角<a,b>.答案:(1)求a•b=(2e1+e2)•
(-3e1+2e2)=
-6e12+e1
•e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1•e2+e22=7同样地求得|b|=7.所以cos<a,b>=a•b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.8.如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.答案:PD与AC互相垂直.理由如下:连接OE,则OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD与AC互相垂直.9.一直线倾斜角的正切值为34,且过点P(1,2),则直线方程为______.答案:因为直线倾斜角的正切值为34,即k=3,又直线过点P(1,2),所以直线的点斜式方程为y-2=34(x-1),整理得,3x-4y+5=0.故为3x-4y+5=0.10.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C11.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221312.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()
A向东南航行km
B.向东南航行2km
C.向东北航行km
D.向东北航行2km答案:A13.(几何证明选讲选做题)如图,梯形,,是对角线和的交点,,则
。
答案:1:6解析:,
,,∵,,而∴。14.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.15.不等式>1–log2x的解是(
)
A.x≥2
B.x>1
C.1xx>2答案:B16.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.17.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C18.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数19.
已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()
A.
B.
C.
D.答案:D20.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C21.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四22.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.23.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为______.答案:∵15000件产品中有1000件次品,从中抽取150件进行检查,∴查得次品数的数学期望为150×100015000=10.故为10.24.已知直线的斜率为3,则此直线的倾斜角为()A.30°B.60°C.45°D.120°答案:∵直线的斜率为3,∴直线倾斜角α满足tanα=3结合α∈[0°,180°),可得α=60°故选:B25.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C26.已知,求证:.答案:证明略解析:因为是轮换对称不等式,可考虑由局部证整体.,相加整理得.当且仅当时等号成立.【名师指引】综合法证明不等式常用两个正数的算术平均数不小于它们的几何平均数这一结论,运用时要结合题目条件,有时要适当变形.27.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与AO相等的向量有
______;
(2)写出与AO共线的向量有
______;
(3)写出与AO的模相等的向量有
______;
(4)向量AO与CO是否相等?答
______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等28.某批n件产品的次品率为1%,现在从中任意地依次抽出2件进行检验,问:
(1)当n=100,1000,10000时,分别以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精确到0.00001)
(2)根据(1),谈谈你对超几何分布与二项分布关系的认识.答案:(1)当n=100时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.100件产品中次品数为1,正品数是99,从100件产品里抽2件,总的可能是C1002,次品的可能是C11C991.所以概率为C11C199C2100=0.2.当n=1000时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.1000件产品中次品数为10,正品数是990,从1000件产品里抽2件,总的可能是C10002,次品的可能是C101C9901.所以概率为是C110C1990C21000≈0.0198.如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.10000件产品中次品数为1000,正品数是9000,从10000件产品里抽2件,总的可能是C100002,次品的可能是C1001C99001.所以概率为C1100?C19900C210000≈0.0198.(2)对超几何分布与二项分布关系的认识:共同点:每次试验只有两种可能的结果:成功或失败.不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;
2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布.29.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:430.设、、为实数,,则下列四个结论中正确的是(
)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.31.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22
(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.
②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.32.设f(x)=ex(x≤0)ln
x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.33.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过
B作BD⊥AC于D,BD交⊙O于E点,若AE平分
∠BAD,则∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D34.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=λCA+μCB,则λμ的值为______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故为1235.已知向量OA=(2,3),OB=(4,-1),P是线段AB的中点,则P点的坐标是()A.(2,-4)B.(3,1)C.(-2,4)D.(6,2)答案:由线段的中点公式可得OP=12(OA+OB)=(3,1),故P点的坐标是(3,1),故选B.36.设和为不共线的向量,若2-3与k+6(k∈R)共线,则k的值为()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B37.用反证法证明命题:“若a,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《美国的诞生》课件
- 《LA格式讲座》课件
- 教培合同范本(2篇)
- 2024年度涉外离婚登记所需材料与程序详解协议3篇
- 《地下水资源调查》课件
- 《知识产权常识》课件
- 2025年扬州货运资格证考试有哪些项目
- 2025年安康货运从业资格证考试技巧
- 2025年兰州从业资格证应用能力考些啥
- 国际金融学课件汇率理论与学说
- 生态毒理学-山西大学中国大学mooc课后章节答案期末考试题库2023年
- 区危化品运输车辆停车场专项应急预案
- 动画分镜头脚本文档模板
- 大事记编写规范
- 当代大学生国家安全教育学习通课后章节答案期末考试题库2023年
- 外立面泛光照明施工方案
- 住院患者非计划拔管危险因素评估量表
- 斯坦福大学人生设计课
- 人教版PEP英语四年级上册全册双减同步分层作业设计含答案
- 配网规划工作思路
- 项目复盘报告PPT通用模板
评论
0/150
提交评论