版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年昆明铁道职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知三点A(1,2),B(2,-1),C(2,2),E,F为线段BC的三等分点,则AE•AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE•AF=1×1+(-2)×(-1)=3.故为:32.下列各量:①密度
②浮力
③风速
④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.3.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0
(c>0)之间的距离为,则等于()
A.-2
B.-6
C..2
D.0答案:A4.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D5.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D6.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.7.设是的相反向量,则下列说法一定错误的是()
A.∥
B.与的长度相等
C.是的相反向量
D.与一定不相等答案:D8.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°9.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.10.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:011.已知z1=5+3i,z2=5+4i,下列各式中正确的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1与z2为虚数,故不能比较大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故选D.12.已知点P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C13.已知随机变量X满足D(X)=2,则D(3X+2)=()
A.2
B.8
C.18
D.20答案:C14.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D15.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(
)
A.
B.
C.
D.答案:A16.已知下列命题(其中a,b为直线,α为平面):
①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③若a∥α,b⊥α,则a⊥b;
④若a⊥b,则过b有且只有一个平面与a垂直.
上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.17.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3318.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.19.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.20.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B21.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.22.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α23.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1224.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..25.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A26.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.27.=(2,1),=(3,4),则向量在向量方向上的投影为()
A.
B.
C.2
D.10答案:C28.如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为______.答案:连BD,则∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故为:129.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()
A.
B.
C.
D.答案:D30.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.31.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.32.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:1033.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()
A.
B.
C.
D.答案:A34.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.35.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2536.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()
A.10种
B.20种
C.25种
D.32种答案:D37.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:438.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C39.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.40.正方形ABCD中,AB=1,分别以A、C为圆心作两个半径为R、r(R>r)的圆,当R、r满足条件______时,⊙A与⊙C有2个交点(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B41.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.12B.13C.23D.1答案:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是23,故选C.42.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.43.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P
F1F2的面积为()
A.
B.1
C.2
D.4答案:B44.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)45.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(
)
A.
B.
C.
D.答案:D46.已知x、y之间的一组数据如下:
x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C47.
008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:
比赛项目
票价(元/场)
篮球
1000
足球
800
乒乓球
500
若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为
A.2
B.3
C.4
D.5
答案:D48.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B49.用综合法或分析法证明:
(1)如果a>0,b>0,则lga+b2≥lga+lgb2(2)求证6+7>22+5.答案:证明:(1)∵a>0,b>0,a+b2≥ab,∴lga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要证6+7>22+5,只需证明(6+7)
2>(8+5)2,即证明242>
240,也就是证明42>40,上式显然成立,故原结论成立.50.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()
A.(1,-2)
B.(3,-2)
C.(2,-2)
D.不存在这样的点答案:C第2卷一.综合题(共50题)1.过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F1构成的△ABF2的周长为()
A.2
B.2
C.4
D.8答案:C2.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.3.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。4.点(1,2)到直线x+2y+5=0的距离为______.答案:点(1,2)到直线x+2y+5=0的距离为d=|1+2×2+5|12+22=25故为:255.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2
表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.6.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()
A.432
B.288
C.216
D.108答案:C7.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:168.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D9.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
答案:A10.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()
A.
B.
C.
D.
答案:A11.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A12.若A、B两点的极坐标为A(4
,
π3),B(6,0),则AB中点的极坐标是
______(极角用反三角函数值表示)答案:A的直角坐标为:(2,23),所以AB的中点坐标为:(4,3)所以极径为:19;极角为:α,tanα=34所以α=arctan34;AB中点的极坐标是:(19,
arctan34)故为:(19,
arctan34)13.用A、B、C三类不同的元件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作。已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1、N2正常工作的概率.
答案:0.792解析:解:分别记三个元件A、B、C能正常工作为事件A、B、C,由题意,这三个事件相互独立,系统N1正常工作的概率为P(A·B·C)=P(A)·P(B)·P(C)=0.8´0.9´0.9=0.648系统N2中,记事件D为B、C至少有一个正常工作,则P(D)=1–P()="1–"P()·P()=1–(1–0.9)´(1–0.9)=0.99系统N2正常工作的概率为P(A·D)=P(A)·P(D)=0.8´0.99=0.792。14.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.15.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)16.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为417.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-218.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.19.已知函数f(x)=ax2+(a+3)x+2在区间[1,+∞)上为增函数,则实数a的取值范围是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函数f(x)=ax2+x+1在区间[1,+∞)上为增函数,∴f′(x)=2ax+a+3≥0在区间[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故为:a≥0.20.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.21.比较大小:a=0.20.5,b=0.50.2,则()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A22.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)23.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C24.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.25.编程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND26.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.27.过点(2,4)作直线与抛物线y2=8x只有一个公共点,这样的直线有()
A.1条
B.2条
C.3条
D.4条答案:B28.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A29.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-230.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线31.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.32.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.
答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.33.已知A,B两点的极坐标为(6,)和(8,),则线段AB中点的直角坐标为()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D34.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D35.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:236.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论37.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,则
k=______.答案:因为已知x2+4y2+kz2=36根据柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)构造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故为:9.38.如图,在⊙O中,弦CD垂直于直径AB,求证:CBCO=CDCA.答案:证明:连接AD,如图所示:由垂径定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.39.若x,y∈R,则“x=0”是“x+yi为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件答案:根据复数的分类,x+yi为纯虚数的充要条件是x=0,y≠0.“若x=0则x+yi为纯虚数”是假命题,反之为真.∴x,y∈R,则“x=0”是“x+yi为纯虚数”的必要不充分条件故选B40.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为()
A.6
B.8
C.10
D.15答案:C41.如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向2km处,河流沿岸PQ(曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)()
A.(2+)a
B.5a
C.2(+1)a
D.6a
答案:B42.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C43.直线x3+y4=1与x,y轴所围成的三角形的周长等于()A.6B.12C.24D.60答案:直线x3+y4=1与两坐标轴交于A(3,0),B(0,4),∴AB=5,∴△AOB的周长为:OA+OB+AB=3+4+5=12,故选B.44.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND45.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C46.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.47.如图是从甲、乙两个班级各随机选出9名同学进行测验成绩的茎叶图,从图中看,平均成绩较高的是______班.答案:∵茎叶图的数据得到甲同学成绩:46,58,61,64,71,74,75,84,87;茎叶图的数据得到乙同学成绩:57,62,65,75,79,81,84,87,89.∴甲平均成绩为69;乙平均成绩为75;故为:乙.48.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.答案:以线段AB的中点为原点,正东方向为x轴的正方向建立直角坐标系,则A(3,0)
B(-3,0)
C(-5,23)依题意|PB|-|PA|=4∴P在以A、B为焦点的双曲线的右支上.这里a=2,c=3,b2=5.其方程为
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在线段BC的垂直平分线上x-3y+7=0…(5分)由方程组x-3y+7=05x2-4y2=20解得
x=8(负值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°东方向.…(10分)49.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.50.已知=(1,2),=(x,1),当(+2)⊥(2-)时,实数x的值为(
)
A.6
B.2
C.-2
D.或-2答案:D第3卷一.综合题(共50题)1.在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.2.(几何证明选讲选选做题)如图,圆的两条弦AC、BD相交于P,弧AB、BC、CD、DA的度数分别为60°、105°、90°、105°,则PAPC=______.答案:连接AB,CD∵弧AB、CD、的度数分别为60°、90°,∴弦AB的长度等于半径,弦CD的长度等于半径的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故为:223.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()
A.0
B.2
C.-2
D.1
答案:C4.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.5.在(x+2y)n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项.答案:∵在(x+2y)n的展开式中第六项与第七项的系数相等,∴Cn525=Cn626,∴n=8,∴二项式共有9项,最中间一项的系数最大即展开式中二项式系数最大的项是第5项.6.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC=λAE+μAF,其中λ、μ∈R,则λ+μ=______.答案:解析:设AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故为:43.7.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:108.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量==415㎏,方差是=794,=958,那么这两个水稻品种中产量比较稳定的是()
A.甲
B.乙
C.甲、乙一样稳定
D.无法确定答案:A9.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()
A.有且仅有一条
B.有且仅有两条
C.有无穷多条
D.不存在答案:B10.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()
A.1
B.-1
C.±1
D.2答案:A11.已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根据题意画出图形,如图所示:可得曲线|x|+|y|=4表示边长为42的正方形,如图ABCD为正方形,x2+y2=r2表示以原点为圆心的圆,过O作OE⊥AB,∵边AB所在直线的方程为x+y=4,∴|OE|=42=22,则满足题意的r的范围是0<r<22.故选A12.试求288和123的最大公约数是
答案:3解析:,,,.∴和的最大公约数13.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.14.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.15.如图,AB是半圆O的直径,C是AB延长线上一点,CD切半圆于D,CD=4,AB=3BC,则AC的长是______.答案:∵CD是圆O的切线,∴由切割线定理得:CD2=CB×CA,∵AB=3BC,设BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴则AC的长是8.故填:8.16.若双曲线与椭圆x216+y225=1有相同的焦点,与双曲线x22-y2=1有相同渐近线,求双曲线方程.答案:依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴双曲线的方程为y23-x26=1…(13分)17.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.18.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C19.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B20.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()
A.
B.
C.
D.答案:D21.函数f(x)=2|log2x|的图象大致是()
A.
B.
C.
D.
答案:C22.双曲线x2n-y2=1(n>1)的两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为______.答案:令|PF1|=x,|PF2|=y,依题意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2为直角三角形∴△PF1F2的面积为12xy=(2n+2+n)(n+2-n)=1故为:1.23.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).24.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B25.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.
(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;
(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.26.用数学归纳法证明不等式成立,起始值至少应取为()
A.7
B.8
C.9
D.10答案:B27.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.28.给出下列结论:
(1)两个变量之间的关系一定是确定的关系;
(2)相关关系就是函数关系;
(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;
(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
以上结论中,正确的有几个?()
A.1
B.2
C.3
D.4答案:A29.设O是正△ABC的中心,则向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共线向量
D.共起点的向量答案:B30.解下列关于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集为解析:(1)
解:(2)
解:分析该题要设法去掉绝对值符号,可由去分类讨论当时原不等式等价于
故得不等式的解集为所以原不等式的解集为31.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.32.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.33.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm34.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31635.选做题
已知抛物线,过原点O直线与交于两点。
(1)求的最小值;
(2)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态养殖肉鸡批发市场与零售商购销合作协议2篇
- 塑胶牛筋蓄水箱安全操作规程
- 网络游戏服务器托管服务合同
- 体育健身行业私教训练意外伤害免责协议
- 小玉米打碴机视频安全操作规程
- 2024版材料加工合作伙伴协议版B版
- 切丝机蔬菜切丝机安全操作规程
- 制造业智能制造技术集成与应用方案
- 2024版建筑项目工程信息共享合同
- 2024某影视公司与特效公司影视特效制作合同
- 中医临床基础研究设计方法与进展智慧树知到期末考试答案2024年
- 手术室急救设备
- 投标技术服务和质保期服务计划
- 重庆市江津区2023年数学九年级上册期末考试试题含解析
- 轮胎返点协议
- 互联网金融(同济大学)智慧树知到期末考试答案2024年
- 国家开放大学管理英语4形考任务1-8
- 教育推广之路
- 《屈原列传》同步练习(含答案) 高中语文统编版选择性必修中册
- 患者入院评估课件
- 如何平衡工作和生活的时间安排
评论
0/150
提交评论