2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年惠州卫生职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()

A.35

B.25

C.15

D.7答案:C2.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()

A.3

B.

C.

D.

答案:D3.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.4.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.5.一个底面是正三角形的三棱柱的侧视图如图所示,则该几何体的侧面积等于()A.3B.6C.23D.2答案:由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,侧面积为3×2×1=6,故为:B.6.为了让学生更多地了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据下面的频率分布表,解答下列问题:

序号

(i)分组

(分数)本组中间值

(Gi)频数

(人数)频率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

计501(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);

(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参赛的800名学生中大概有多少同学获奖?

(3)请根据频率分布表估计该校高二年级参赛的800名同学的平均成绩.答案:(1)①为6,②为0.4,③为12,④为12⑤为0.24.(5分)(2)(12×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估计平均成绩为81分.(12分)7.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如下图所示,则

A、以上四个图形都是正确的

B、只有(2)(4)是正确的

C、只有(4)是错误的

D、只有(1)(2)是正确的答案:C8.赋值语句M=M+3表示的意义()

A.将M的值赋给M+3

B.将M的值加3后再赋给M

C.M和M+3的值相等

D.以上说法都不对答案:B9.如图是一个实物图形,则它的左视图大致为()A.

B.

C.

D.

答案:∵左视图是指由物体左边向右做正投影得到的视图,并且在左视图中看到的线用实线,看不到的线用虚线,∴该几何体的左视图应当是包含一条从左上到右下的对角线的矩形,并且对角线在左视图中为实线,故选D.10.参数方程x=cosαy=1+sinα(α为参数)化成普通方程为

______.答案:∵x=cosαy=1+sinα(α为参数)∴x2+(y-1)2=cos2α+sin2α=1.即:参数方程x=cosαy=1+sinα(α为参数)化成普通方程为:x2+(y-1)2=1.故为:x2+(y-1)2=1.11.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=______.答案:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故两圆圆心在第一象限的角平分线上,设圆心的坐标为(a,a),则有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圆心为(5+22,5+22

和(5-22,5-22

),故两圆心的距离|C1C2|=2[(5+22)-(5-22)]=8,故为:812.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°13.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010B.01100C.10111D.00011答案:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.14.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C15.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:

①“取出两只红球和一只白球”与“取出一只红球和两只白球”;

②“取出两只红球和一只白球”与“取出3只红球”;

③“取出3只红球”与“取出的3只球中至少有一只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.16.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为______.答案:a2+b2的几何意义是到原点的距离,它的最小值转化为原点到直线3x+4y=15的距离:d=155=3.故为3.17.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.18.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).19.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()

A.

B.

C.

D.答案:C20.设a,b,c都是正数,求证:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:证明略解析:证明

(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.21.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C22.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故为:i.23.若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.当且仅当2x?1=3y?1,即2x=3y时取等号.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值为12,最小值点为(14,16).24.已知二项分布ξ~B(4,12),则该分布列的方差Dξ值为______.答案:∵二项分布ξ~B(4,12),∴该分布列的方差Dξ=npq=4×12×(1-12)=1故为:125.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C26.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()

A.两个球

B.两个长方体

C.两个圆柱

D.两个圆锥答案:A27.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:

①计算c=a2+b2;

②输入直角三角形两直角边长a,b的值;

③输出斜边长c的值;

其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③答案:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=a2+b2,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.28.定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是()

A.

B.

C.

D.答案:D29.螺母是由

______和

______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.30.在△ABC中,已知D是AB边上一点,若AD=2DB,CD=λCA+μCB,则λμ的值为______.答案:∵AD=2DB,∴CD=CA+23

AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故为1231.函数y=()|x|的图象是()

A.

B.

C.

D.

答案:B32.参数方程(θ为参数)表示的曲线是()

A.直线

B.圆

C.椭圆

D.抛物线答案:C33.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()

A.10

B.12

C.16

D.20答案:D34.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需

即只需由条件,显然成立.∴原不等式成立35.已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则AB与CA的夹角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14•14=-714=-12,∴θ=<AB,CA>=120°.故为120°36.已知A(-1,2),B(2,-2),则直线AB的斜率是()

A.

B.

C.

D.答案:A37.一部记录影片在4个单位轮映,每一单位放映一场,则不同的轮映方法数有()A.16B.44C.A44D.43答案:本题可以看做把4个单位看成四个位置,在四个位置进行全排列,故有A44种结果,故选C.38.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()

A.3,

B.3,

C.2,

D.2,1答案:C39.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()

A.10

B.

C.

D.38答案:A40.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B41.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:1242.有五条线段长度分别为1、3、5、7、9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为()A.110B.310C.12D.710答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从五条线段中取三条共有C53种结果,而满足条件的事件是3、5、7;3、7、9;5、7、9,三种结果,∴由古典概型公式得到P=3C35=310,故选B.43.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C44.选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于______.答案:连接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一个等边三角形,∴OA=AB=4,∴⊙O的面积是16π故为16π45.若点(2,-2)在圆(x-a)2+(y-a)2=16的内部,则实数a的取值范围是()

A.-2<a<2

B.0<a<2

C.a<-2或a>2

D.a=±2答案:A46.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.47.如图,在棱长为2的正方体ABCD-A1B1C1D1中,以底面正方形ABCD的中心为坐标原点O,分别以射线OB,OC,AA1的指向为x轴、y轴、z轴的正方向,建立空间直角坐标系.试写出正方体八个顶点的坐标.答案:解设i,j,k分别是与x轴、y轴、z轴的正方向方向相同的单位坐标向量.因为底面正方形的中心为O,边长为2,所以OB=2.由于点B在x轴的正半轴上,所以OB=2i,即点B的坐标为(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即点B1的坐标为(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).48.设xi,yi

(i=1,2,…,n)是实数,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一个排列.求证:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:证明:要证ni-1(xi-yi)2≥ni-1(xi-zi)2,只需证

ni=1

yi2-2ni=1

xi•yi≥ni=1

zi2-2ni=1

xi•zi,由于ni=1

yi2=ni=1

zi2,故只需证ni=1

xi•zi≤ni=1

xi•yi

①.而①的左边为乱序和,右边为顺序和,根据排序不等式可得①成立,故要证的不等式成立.49.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A50.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.

(1)求X的分布列;

(2)求此员工月工资的期望.答案:(1)X的所有可能取值为0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=2280第2卷一.综合题(共50题)1.下列输入语句正确的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A2.输入3个数,输出其中最大的公约数,编程序完成上述功能.答案:INPUT

m,n,kr=m

MOD

nWHILE

r<>0m=nn=rr=m

MOD

nWENDr=k

MOD

nWHILE

r<>0k=nn=rr=k

MOD

nWENDPRINT

nEND3.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(

)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c

c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2

选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。4.正方体ABCD-A1B1C1D1的棱长为1,点M是棱AB的中点,点P是平面ABCD上的一动点,且点P到直线A1D1的距离两倍的平方比到点M的距离的平方大4,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线答案:在平面ABCD上,以AD为x轴,以AB为y轴建立平面直角坐标系,则M(,12,0),设P(x,y)则|MP|2=y2+(x-12)2点P到直线A1D1的距离为x2+1由题意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74选C5.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}6.

圆ρ=(cosθ+sinθ)的圆心的极坐标是()

A.(1,)

B.(,)

C.(,)

D.(2,)

答案:A7.已知点O为△ABC外接圆的圆心,且有,则△ABC的内角A等于()

A.30°

B.60°

C.90°

D.120°答案:A8.下列各组集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.9.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()

A.9

B.1

C.-1

D.-9答案:C10.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(

A.3

B.2

C.-1

D.0答案:A11.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.12.在空间有三个向量AB、BC、CD,则AB+BC+CD=()A.ACB.ADC.BDD.0答案:如图:AB+BC+CD=AC+CD=AD.故选B.13.设a=(4,3),a在b上的投影为522,b在x轴上的投影为2,且|b|≤14,则b为()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x轴上的投影为2,∴设b=(2,y)∵a在b上的投影为522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故选B14.在下面的图示中,结构图是()

A.

B.

C.

D.

答案:B15.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).16.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为

______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=117.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.不能确定答案:B18.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)19.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A20.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是

______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.21.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为()

A.A88

B.A55A44

C.A44A44

D.A85答案:B22.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.23.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.24.在数列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)计算a2,a3,a4

(2)猜想数列{an}的通项公式,并用数学归纳法证明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.②假设n=k时命题成立,即ak=2k+1当n=k+1时ak+1=2a

k2+ak=2×2k+12+2k+1(把假设作为条件代入)=42(k+1)+2=2(k+1)+1由①②知命题对一切n∈N*均成立.25.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()

A.a,b都能被5整除

B.a,b都不能被5整除

C.a,b不能被5整除

D.a,b有1个不能被5整除答案:B26.已知m,n为正整数.

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.27.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,FA与x轴正方向的夹角为60°,求|OA|的值.答案:由题意设A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(负值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p28.在极坐标中,由三条曲线θ=0,θ=,ρcosθ+ρsinθ=1围成的图形的面积是()

A.

B.

C.

D.答案:A29.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()

A.

B.

C.

D.以上均不对答案:A30.过点P(3,0)作一直线,它夹在两条直线l1:2x-y-3=0,l2:x+y+3=0之间的线段恰被点P平分,该直线的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C31.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.32.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.33.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:B34.已知x,y的取值如下表所示:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.535.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()

A.12

B.13

C.24

D.28答案:C36.直线l过点(-3,1),且它的一个方向向量n=(2,-3),则直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得n=(2,-3)与a=(1,k)互相平行∴12=k-3⇒k=-32所以直线l的点斜式方程为:y-1=-32(x+3)化成一般式:3x+2y+7=0故为:3x+2y+7=037.若a<b<c,x<y<z,则下列各式中值最大的一个是()

A.ax+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.ax+by+cz答案:D38.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()

A.4

B.

C.

D.答案:D39.构成多面体的面最少是()

A.三个

B.四个

C.五个

D.六个答案:B40.设函数g(x)=ex

x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故为:12.41.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)42.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8343.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C44.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C45.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了三组事件:

①至少有1个白球与至少有1个黄球;

②至少有1个黄球与都是黄球;

③恰有1个白球与恰有1个黄球.

其中互斥而不对立的事件共有()组.

A.0

B.1

C.2

D.3答案:A46.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B47.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm48.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C49.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?

(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).

答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=150.当a>0时,设命题P:函数f(x)=x+ax在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函数f(x)=x+ax在区间(1,2)上单调递增;∴f′(x)≥0在区间(1,2)上恒成立,∴1-ax2≥0在区间(1,2)上恒成立,即a≤x2在区间(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0对任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命题,则P且Q都是真命题,故由①②的交集得:0<a≤1,则实数a的取值范围是0<a≤1.故选A.第3卷一.综合题(共50题)1.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()

A.12

B.13

C.24

D.28答案:C2.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A3.如果随机变量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,则P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A4.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.5.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A6.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且

y=0.95x+

a,则

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.7.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填1248.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()

A.0

B.

C.

D.答案:B9.直线l1过点P(0,-1),且倾斜角为α=30°.

(I)求直线l1的参数方程;

(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)

(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)10.若(1+2)5=a+b2(a,b为有理数),则a+b=()A.45B.55C.70D.80答案:解析:由二项式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故选C11.(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:;

(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.12.在直角三角形ABC中,∠ACB=90°,CD、CE分别为斜边AB上的高和中线,且∠BCD与∠ACD之比为3:1,求证CD=DE.

答案:证明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜边AB上的中线∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC为等腰直角三角形∴CE=DE.13.已知x,y的取值如下表:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).14.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0

(1)证明:1a是f(x)的一个根;(2)试比较1a与c的大小.答案:证明:(1)∵f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,f(x)=0的两个根x1,x2满足x1x2=ca,又f(c)=0,不妨设x1=c∴x2=1a,即1a是f(x)=0的一个根.(2)假设1a<c,又1a>0由0<x<c时,f(x)>0,得f(1a)>0,与f(1a)=0矛盾∴1a≥c又:f(x)=0的两个根不相等∴1a≠c,只有1a>c15.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:

甲273830373531乙332938342836请判断:谁参加这项重大比赛更合适,并阐述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙参加更合适

(12分)16.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()

A.

B.

C.

D.答案:D17.关于生活中的圆锥曲线,有下面几个结论:

(1)标准田径运动场的内道是一个椭圆;

(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线;

(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线;

(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.

其中正确命题的序号是______(把你认为正确命题的序号都填上).答案:(1)标准田径运动场的内道是有直道和弯道部分是半圆组成,不是椭圆.故错误(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线.故正确.(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线.故正确.(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.故正确.故为:(2)(3)(4)18.如图,梯形ABCD内接于⊙O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是

______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故为:60°19.已知圆的极坐标方程是ρ=2cosθ,那么该圆的直角坐标方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A20.要从10名女生与5名男生中选出6名学生组成课外活动小组,则符合按性别比例分层抽样的概率为()

A.

B.

C.

D.

答案:C21.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1422.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A23.已知指数函数f(x)的图象过点(3,8),求f(6)的值.答案:设指数函数为:f(x)=ax,因为指数函数f(x)的图象过点(3,8),所以8=a3,∴a=2,所求指数函数为f(x)=2x;所以f(6)=26=64所以f(6)的值为64.24.四面体ABCD中,设M是CD的中点,则化简的结果是()

A.

B.

C.

D.答案:A25.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.26.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.27.已知直线l:kx-y+1+2k=0.

(1)证明:直线l过定点;

(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.答案:(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)令y=0得A点坐标为(-2-1k,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.当且仅当4k=1k,即k=12时取等号.即△AOB的面积的最小值为4,此时直线l的方程为12x-y+1+1=0.即x-2y+4=028.圆锥曲线x=4secθ+1y=3tanθ的焦点坐标是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函数的运算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作双曲线x216-y29=1向右平移1个单位得到,而双曲线x216-y29=1的焦点为(-5,0),(5,0)故所求双曲线的焦点为(-4,0),(6,0)故为:(-4,0),(6,0)29.算法:第一步

x=a;第二步

若b>x则x=b;第三步

若c>x,则x=c;

第四步

若d>x,则x=d;

第五步

输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.30.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;

(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)31.有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是______.答案:所有的取法共有C34=4种,三条线段构成三角形的条件是任意两边之和大于第三边,其中能够成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3种,故这三条线段为边可以构成三角形的概率是34,故为34.32.某射击运动员在四次射击中分别打出了9,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的方差是______.答案:∵四次射击中分别打出了10,x,10,8环,这组数据的平均数为9,∴9+x+10+84,∴x=9,∴这组数据的方差是14(00+1+1)=12,故为:1233.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论