版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年徐州幼儿师范高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()
A.
B.
C.2
D.4答案:A2.小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是()
A.
B.
C.
D.答案:A3.若直线l的方程为x=2,则该直线的倾斜角是()A.60°B.45°C.90°D.180°答案:∵直线l的方程为x=2∴直线l与x轴垂直∴直线l的倾斜角为90°故选C4.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.5.椭圆上有一点P,F1,F2是椭圆的左、右焦点,△F1PF2为直角三角形,则这样的点P有()
A.3个
B.4个
C.6个
D.8个答案:C6.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.7.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B8.已知复数z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:
(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为(3,2),试求点P的坐标;
(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.答案:(I)由题设得,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0•.z,∴x′+y′i=.(1-3i)•.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由复数相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和题意得,x+3y=33x-y=2,解得x=343y=14
,即P点的坐标为(343,14).
(Ⅲ)∵直线y=kx上的任意点P(x,y),其经变换后的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵当k=0时,y=0,y=3x不是同一条直线,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-39.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.10.函数y=a|x|(a>1)的图象是()
A.
B.
C.
D.
答案:B11.正方体的表面积与其外接球表面积的比为()A.3:πB.2:πC.1:2πD.1:3π答案:设正方体的棱长为a,不妨设a=1,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面积为:S球=4πR2=3π.则正方体的表面积与其外接球表面积的比为:6:3π=2:π.故选B.12.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B13.用数学归纳法证明:
对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:证明:(1)当n=1时,左边=12+1=2,右边=1×2×33=2,所以当n=1时,命题成立;
…(2分)(2)设n=k时,命题成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)则当n=k+1时,左边=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以当n=k+1时,命题成立.综合(1)(2)得:对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)14.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:
(1)二进制表示中恰有5位数码的好数共有______个;
(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;
其中三位的二进制数是:101,110,111,共有C12+C22个;
其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;
其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;
以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个15.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B16.若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直线l2的倾斜角为钝角,∴k2<0.直线l1,l3的倾斜角为锐角,且直线l1的倾斜角小于l3的倾斜角,∴0<k1<k3.故选A.17.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()
A.
B.
C.
D.答案:D18.今天为星期六,则今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余数是1故今天为星期六,则今天后的第22010天是星期日故选D19.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D20.如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.答案:PD与AC互相垂直.理由如下:连接OE,则OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD与AC互相垂直.21.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.22.已知平面α内有一个点A(2,-1,2),α的一个法向量为=(3,1,2),则下列点P中,在平面α内的是()
A.(1,-1,1)
B.(1,3,)
C.,(1,-3,)
D.(-1,3,-)答案:B23.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;524.已知的单调区间;
(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形
,得,(2)首先证明任意事实上,而
.25.在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间()
A.有95%的把握认为两者有关
B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关
D.约有99%的打鼾者患心脏病答案:C26.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x27.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D28.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.29.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2
表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.30.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.31.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).32.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s
0
5
9
12
n
5
4
3
2当n=12时,不满足“s<10”,则输出n的值2故为:233.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线34.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为()A.2B.3C.4D.无数个答案:由题意,两腰为2,底角为30°;两腰为2,顶角为30°;底边为2,底角为30°;底边为2,顶角为30°.∴共4个元素,故选C.35.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上答案:C36.______称为向量的长度(或称为模),记作
______,______称为零向量,记作
______,______称为单位向量.答案:向量AB所在线段AB的长度,即向量AB的大小,称为向量AB的长度(或成为模),记作|AB|;长度为零的向量称为零向量,记作0;长度等于1个单位的向量称为单位向量.故为:向量AB所在线段AB的长度,即向量AB的大小,|AB|;长度为零的向量,0;长度等于1个单位的向量.37.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()
A.9
B.1
C.-1
D.-9答案:C38.求证1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:证明:①当n=1时,左边=2,右边=13×1×2×3=2,等式成立;②假设当n=k时,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)则当n=k+1时,左边=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1时,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)对任意正整数都成立.39.命题“三角形中最多只有一个内角是直角”的结论的否定是()
A.有两个内角是直角
B.有三个内角是直角
C.至少有两个内角是直角
D.没有一个内角是直角答案:C40.命题:“若a>0,则a2>0”的否命题是()A.若a2>0,则a>0B.若a<0,则a2<0C.若a≤0,则a2≤0D.若a≤0,则a2≤0答案:否命题是将条件,结论同时否定,∴若a>0,则a2>0”的否命题是若a≤0,则a2≤0,故为:C41.若事件与相互独立,且,则的值等于A.B.C.D.答案:B解析:事件“”表示的意义是事件与同时发生,因为二者相互独立,根据相互独立事件同时发生的概率公式得:.42.小李在一旅游景区附近租下一个小店面卖纪念品和T恤,由于经营条件限制,他最多进50件T恤和30件纪念品,他至少需要T恤和纪念品40件才能维持经营,已知进货价为T恤每件36元,纪念品每件50元,现在他有2400元可进货,假设每件T恤的利润是18元,每件纪念品的利润是20元,问怎样进货才能使他的利润最大,最大利润为多少?答案:设进T恤x件,纪念品y件,可得利润为z元,由题意得x、y满足的约束条件为:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目标函数z=18x+20y约束条件的可行域如图所示:五边形ABCDE的各个顶点坐标分别为:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),当直线l:z=18x+20y经过C(50,252)时取最大值,∵x,y必为整数,∴当x=50,y=12时,z取最大值即进50件T恤,12件纪念品时,可获最大利润,最大利润为1140元.43.已知直线l:kx-y+1+2k=0.
(1)证明:直线l过定点;
(2)若直线l交x负半轴于A,交y正半轴于B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.答案:(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)令y=0得A点坐标为(-2-1k,0),令x=0得B点坐标为(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.当且仅当4k=1k,即k=12时取等号.即△AOB的面积的最小值为4,此时直线l的方程为12x-y+1+1=0.即x-2y+4=044.(理)已知函数f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是______.答案:作出函数的图象如图,直线y=y0交函数图象于如图,由正弦曲线的对称性,可得A(a,y0)与B(b,y0)关于直线x=12对称,因此a+b=1当直线线y=y0向上平移时,经过点(2011,1)时图象两个图象恰有两个公共点(A、B重合)所以0<y0<1时,两个图象有三个公共点,此时满足f(a)=f(b)=f(c),(a、b、c互不相等),说明1<c<2011,因此可得a+b+c∈(2,2012)故为(2,2012)45.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C46.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
D.答案:C47.已知F1、F2为椭圆x225+y216=1的左、右焦点,若M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,则满足条件的点M有
()个.A.0B.1C.2D.4答案:设△MF1F2的内切圆的内切圆的半径等于r,则由题意可得2πr=3π,∴r=32.由椭圆的定义可得
MF1+MF2=2a=10,又2c=6,∴△MF1F2的面积等于12
(MF1+MF2+2c)r=8r=12.又△MF1F2的面积等于12
2cyM=12,∴yM=4,故M是椭圆的短轴顶点,故满足条件的点M有2个,故选
C.48.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()
A.1
B.2
C.
D.3答案:C49.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.50.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.第2卷一.综合题(共50题)1.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.2.方程组的解集为()
A.{2,1}
B.{1,2}
C.{(2,1)}
D.(2,1)答案:C3.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:64.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.5.点P,设△ABC的面积是△PBC的面积的m倍,那么m=()
A.1
B.
C.4
D.2答案:B6.将椭圆x2+6y2-2x-12y-13=0按向量a平移,使中心与原点重合,则a的坐标是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:椭圆方程x2+6y2-2x-12y-13=0变形为:(x-1)2+6(y-1)2=20,则椭圆中心(1,1),即需按a=(-1,-1)平移,中心与原点重合.故选C.7.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()
A.是锐角三角形
B.是直角三角形
C.是钝角三角形
D.不存在答案:B8.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B9.已知x,y的取值如下表:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).10.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()
A.互斥事件
B.独立事件
C.对立事件
D.不相互独立事件答案:B11.种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率为p(1-q)+(1-p)q=p+q-2pq。12.已知向量,,则“,λ∈R”成立的必要不充分条件是()
A.
B与方向相同
C.
D.答案:D13.已知a=3i+2j-k,b=i-j+2k,则5a与3b的数量积等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a•3b=15×3+10×(-3)+(-5)×6=-15故为:-1514.点M(4,)化成直角坐标为()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B15.一元二次不等式ax2+bx+c≤0的解集是全体实数所满足的条件是(
)
A.
B.
C.
D.答案:D16.求过点A(2,3)且被两直线3x+4y-7=0,3x+4y+8=0截得线段为32的直线方程.答案:设所求直线l的斜率为k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2条直线的夹角为45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直线的方程为y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.17.过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是______.答案:∵圆x2+y2=4的圆心是O(0,0),半径r=2,点(0,2)到圆心O(0,0)的距离是d=0+4=2=r,∴点(0,2)在圆x2+y2=4上,∴过点(0,2)且与圆x2+y2=4只有一个交点的直线方程是0x+2y=4,即y=2.故为:y=2.18.极坐标方程pcosθ=表示()
A.一条平行于x轴的直线
B.一条垂直于x轴的直线
C.一个圆
D.一条抛物线答案:B19.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面答案:B20.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()
A.当n=6时,该命题不成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=4时,该命题成立答案:C21.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.22.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5
不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)
(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.23.已知下列命题(其中a,b为直线,α为平面):
①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③若a∥α,b⊥α,则a⊥b;
④若a⊥b,则过b有且只有一个平面与a垂直.
上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.24.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()
A.
B.
C.
D.答案:D25.已知向量a表示“向东航行1km”,向量b表示“向北航行3km”,则向量a+b表示()A.向东北方向航行2kmB.向北偏东30°方向航行2kmC.向北偏东60°方向航行2kmD.向东北方向航行(1+3)km答案:如图,作OA=a,OB=b.则OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏东30°方向航行2km.故选B.26.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:227.已知曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)上一点P,原点为0,直线P0的倾斜角为π4,则P点的坐标是______.答案:根据题意,曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)消去参数化成普通方程,得x29+y216=1(y≥0)∵直线P0的倾斜角为π4,∴P点在直线y=x上,将其代入椭圆方程得x29+x216=1,解之得x=y=125(舍负),因此点P的坐标为(125,125)故为:(125,125)28.如图,⊙O与⊙O′交于
A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.无法确定
答案:B29.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()
A.5
B.6
C.7
D.8答案:C30.给定两个长度为1的平面向量OA和OB,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧AB上变动,若OC=xOA+yOB,其中x,y∈R,则xy的范围是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而点C在以O为圆心的圆弧AB上变动,得x,y∈[0,1],于是,0≤xy≤12,故为[0,12].31.已知集合M={0,1},N={2x+1|x∈M},则M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},当x=0时,2x+1=1;当x=1时,2x+1=3,∴N={1,3}则M∩N={1}.故选A.32.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:033.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是(
)
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a=±1答案:A34.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,设(α,β∈R),则α+β的最大值等于
()
A.
B.
C.
D.1
答案:B35.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B36.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B37.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是______.答案:10个白球中取5个白球有C105种9个黑球中取5个黑球有C95种∴一次摸出5个球,它们的颜色相同的有C105+C95种∴一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率=C510C510+C59=23故为:2338.椭圆x=5cosαy=3sinα(α是参数)的一个焦点到相应准线的距离为______.答案:椭圆x=5cosαy=3sinα(α是参数)的标准方程为:x225+y29=1,它的右焦点(4,0),右准线方程为:x=254.一个焦点到相应准线的距离为:254-4=94.故为:94.39.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,
(1)设直线l的倾斜角为α,写出直线l的参数方程;
(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p240.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是______.答案:当a>0时,方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1当a≤0时函数f(x)=2ax2-x-1在(0,1)内恰无解.故为:a>141.已知定点A(12.0),M为曲线x=6+2cosθy=2sinθ上的动点,若AP=2AM,试求动点P的轨迹C的方程.答案:设M(6+2cosθ,2sinθ),动点(x,y)由AP=2AM,即M为线段AP的中点故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴动点P的轨迹C的方程为x2+y2=1642.直线的参数方程为,l上的点P1对应的参数是t1,则点P1与P(a,b)之间的距离是(
)
A.|t1|
B.2|t1|
C.
D.答案:C43.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.44.若A∩B=A∪B,则A______B.答案:设有集合W=A∪B=B∩C,根据并集的性质,W=A∪B?A?W,B?W,根据交集的性质,W=A∩B?W?A,W?B由集合子集的性质,A=B=W,故为:=.45.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A46.设随机变量X~N(μ,δ2),且p(X≤c)=p(X>c),则c的值()
A.0
B.1
C.μ
D.μ答案:C47.
如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且,则用
表示向量为(
)
A.
B.
C.
D.
答案:A48.对于一组数据的两个函数模型,其残差平方和分别为153.4
和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为______的那个.答案:残差的平方和是用来描述n个点与相应回归直线在整体上的接近程度残差的平方和越小,拟合效果越好,由于153.4<200,故拟合效果较好的是残差平方和是153.4的那个模型.故为:153.4.49.已知直线y=kx+1与椭圆x25+y2m=1恒有公共点,则实数m的取值范围为()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直线y=kx+1恒过点M(0,1)要使直线y=kx+1与椭圆x25+y2m=1恒有公共点,则只要M(0,1)在椭圆的内部或在椭圆上从而有m>0m≠505+1m≤1,解可得m≥1且m≠5故选D.50.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.第3卷一.综合题(共50题)1.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()
A.小前提错
B.结论错
C.正确的
D.大前提错答案:C2.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B3.已知直线l的方程为x=2-4
ty=1+3
t,则直线l的斜率为______.答案:直线x=2-4
ty=1+3
t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.4.如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.答案:PD与AC互相垂直.理由如下:连接OE,则OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD与AC互相垂直.5.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B6.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______
(1)有95%的把握认为“这种血清能起到预防感冒的作用”
(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒
(3)这种血清预防感冒的有效率为95%
(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).7.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()
A.椭圆
B.圆
C.双曲线
D.双曲线的一支答案:B8.有一农场种植一种水稻在同一块稻田中连续8年的年平均产量如下:(单位:kg)
450
430
460
440
450
440
470
460;
则其方差为()
A.120
B.80
C.15
D.150答案:D9.等于()
A.a16
B.a8
C.a4
D.a2答案:C10.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D11.(几何证明选讲选做题)
如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则切线PA的长度等于______.答案:∵∠PAB=120°,∴优弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圆O的切线,切点为A,∴∠OAP=90°∴PA=3OA=23故为:2312.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C13.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个D.1个答案:命题“若a>b,则ac2>bc2”为假命题;其逆命题为“若ac2>bc2,则a>b”为真命题;其否命题为“若a≤b,则ac2≤bc2”为真命题;其逆否命题为“若ac2≤bc2,则a≤b”为假命题;故选C14.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.15.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.16.已知△ABC,D为AB边上一点,若AD=2DB,CD=13CA+λCB,则λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故为:23.17.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为
______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.18.求下列函数的定义域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).19.已知双曲线的两渐近线方程为y=±32x,一个焦点坐标为(0,-26),
(1)求此双曲线方程;
(2)写出双曲线的准线方程和准线间的距离.答案:(1)由题意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故该双曲线的标准方程为y218-x28=1.(2)由(1)得,双曲线的准线方程为y=±1826x;准线间的距离为2a2c=2×1826=182613.20.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
答案:A21.若直线l的方程为x=2,则该直线的倾斜角是()A.60°B.45°C.90°D.180°答案:∵直线l的方程为x=2∴直线l与x轴垂直∴直线l的倾斜角为90°故选C22.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A23.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.24.下列函数中,定义域为(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函数y=1x的定义域为(0,+∞),函数y=x的定义域为[0,+∞),函数y=1x2的定义域为{x|x≠0},函数y=12x的定义域为R,故只有A中的函数满足定义域为(0,+∞),故选A.25.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.26.已知z是纯虚数,z+21-i是实数,则z=______.答案:令Z=bi,则z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是实数,故b=-2则Z=-2i故为:-2i27.下列四组函数,表示同一函数的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函数必然具有相同的定义域、值域、对应关系,A中的2个函数的值域不同,B中的2个函数的定义域不同,C中的2个函数的对应关系不同,只有D的2个函数的定义域、值域、对应关系完全相同,故选D.28.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.123B.363C.273D.6答案:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为a,则32a=33,∴a=6,故三棱柱体积V=12?62?32?4=363.故选B29.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.
A.1
B.2
C.3
D.4答案:C30.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C31.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.32.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.33.设O为坐标原点,给定一个定点A(4,3),而点B(x,0)在x正半轴上移动,l(x)表示AB的长,则△OAB中两边长的比值的最大值为()
A.
B.
C.
D.答案:B34.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(
)
A.
B.
C.
D.
答案:B35.已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是______.答案:设抛物线方程为y2=2px(p>0),将M(1,2)代入y2=2px,得P=2.∴抛物线方程为y2=4x,焦点为F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业并购咨询合同
- 企业客户答谢宴用车协议
- 个人与企业之间信用贷款合同
- 代言权放弃协议书
- 二手房产买卖协议过户
- 企业考察包车合同范本
- 产品质量赔偿和解协议
- 个人房产抵押贷款合同范例
- 企业园区物业管理沙盘推演
- 会展中心绿化建设项目服务协议
- 院感病例(讲稿)
- 高考英语单词3500记忆短文40篇
- 北京市商业地产市场细分研究
- 2023-2024学年重庆市大足区八年级(上)期末数学试卷(含解析)
- 肺结节科普知识宣讲
- 网络直播营销
- 2024年节能减排培训资料
- 2024传染病预防ppt课件完整版
- 2024年华融实业投资管理有限公司招聘笔试参考题库含答案解析
- 2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)历史试题(适用地区:贵州)含解析
- 《宽容待人 正确交往》班会课件
评论
0/150
提交评论