版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ComputerOrganizationChapter2TherepresentationofinformationinacomputerChapter2Therepresentationof
informationinacomputer2.1Datetypesrepresentinginformationinacomputer2.2Representationoffixed-pointunsignednumbers2.3Representationoffixed-pointsignednumbers2.4Binaryaddition/subtraction2.5OthercodesystemsChapter2Therepresentationof
informationinacomputerDatatypesinacomputersystem:file,graph,table,tree,array,queue,linkedlist,stack,vector,string,real,integer,Boolean,charThischaptermakesnoattempttodiscusstherepresentationsofallkindsofinformation.Itprovidesabasicintroductiontorepresentinginformation.DatatypeDatastructureDatarepresentationMostlyused,simple,easy
implementedbyhardwareDesignedforsystemsoftware,applicationoriented,relationshipbetweenlogicandphysicalstructure.Chapter2Therepresentationof
informationinacomputerPrinciplestodecidewhichdatatypesareimplementedbydatarepresentation:1.Reducetherunningtimeofprogram2.ReducethecommunicationcostbetweenCPUandmemory3.UniversalityandUtilization
Chapter2Therepresentationof
informationinacomputer2.1Datatypesrepresentinginformation
inacomputerBinaryvariablesandbinarycodesserveasthebasisforrepresentinginformationInordertorepresentdifferenttypesofinformation,weneedtoapplydifferentmethodsandsystemsofrepresentationutilizingbinarydigits.UnsignednumbersSignednumbersBitstringFix-PointNumberFloating-PointNumberUnsignednumber:arecreateddirectlyasordinarybinarycodesOperationcodesintheOPcodefieldRegisternumbersinaddressfieldMemoryaddresscounterTime,clockfrequency2.1Datatypesrepresentinginformation
inacomputerSignednumberNumericalandengineeringcomputationMostarithmeticoperationsintheinstructionsethandlesignedintegersorfloating-pointnumbersastheiroperands.bitstring(hasanevenwiderapplication)logicoperationsintheinstructionsetDenotesymbolssuchascharactersIncontrolunitofacomputer,forexample,instatuswords,taggeddata,andcontrolcodes.2.1Datatypesrepresentinginformation
inacomputerFix-PointNumberPointmeanstheDecimalpointinbinary.Fix-pointmeansthepositionof
Decimalpointisfixed.Itishidden。(不占位)
consistsoffix-pointdecimalandfix-pointinteger
signbit
Numericalpart
Positionofdicemalpoint
signbit
Numericalpart
F-pintegerF-pdecimal2.1Datatypesrepresentinginformation
inacomputer2.2representationof
fixed-pointunsignednumbersWeightedpositionalnumbersystem(带权的位置数制)Anumberisrepresentedbyanumberofdigitseachofwhichevaluatestoaprespecifiedvaluethesumofthevaluescontributedbyallthedigitsequalsthevalueofthenumber.Radix(基数)weighted(权)decimalsystembinarysystem,octalsystem,hexadecimalsystem1、Positionalnumbersystem1)(Decimal)Radix-10numbersystemuses10notationsforthedigits(0~9)weight:10iex:23.4123.45isexpressedas:123.45=1×102+2×101+3×100+4×10-1+5×10-24×10-13×1002×1011、Positionalnumbersystem2)(Binary)Radix-2numbersystemuses10notationsforthedigits(0,1)weight:2iex:101.11×2-11×200×211×223)(Hexadecimal)Radix-16numbersystemuses10notationsforthedigits(0~15)weight:16iex:2CA.E(2C7.1F)16isexpressedas:(2C7.1F)16=2×162+12×161+7×160+1
×16-1+15×16-21、Positionalnumbersystem14×16-110×16012×1612×1622、Conversionbetweennumbersof
differentrepresentations1)Conversionfrombinary(octal,hexadecimal)
todecimal(按权展开法:先写成多项式,然后计算十进制结果)N=dn-1dn-2•
•
•
•
•
•d1d0.d-1d-2
•
•
•
•
•
•d-m=dn-1×Rn-1+
dn-2×Rn-2+
•
•
•
•
•
•
+
d1×R1+d0×R0
(integerpart)
+
d-1×R-1+
d-2×R-2+•
•
•
•
•
•
+
d-m×R-m
(decimalpart)whererdenotestheradix
R=2;
R=8;
R=16;Convert(1101.01)2,(237)8,(10D)16totheirdecimalformat(1101.01)2=1×23+1×22+0×21+1×20+0×2-1+1×2-2
=8+4+1+0.25=13.25(237)8=2×82+3×81+7×80
=128+24+7=159(10D)16=1×162+13×160
=256+13=2692、Conversionbetweennumbersof
differentrepresentationsex2.12)decimaltobinaryTwosteps:Integerpart(除2取余法)Basedonrepeateddecimaldivisionby2Fractionalpart(乘2取整法)Basedonrepeateddecimalmultiplicationby22、Conversionbetweennumbersof
differentrepresentations2)decimaltobinaryConvert(327)10
tobinary2327Remainder216312811240122002100250221210201(327)10=(101000111)2……high……low2、Conversionbetweennumbersof
differentrepresentationsexampleIntegerpart2)decimaltobinaryConvert(0.8125)10
tobinary
0.8125×2=1.625 1 0.625×2=1.25 1 0.25×2=0.5 0 0.5×2=1 1
(0.8125)10=(0.1101)2……high……low2、Conversionbetweennumbersof
differentrepresentationsexampleFractionalpart2)decimaltobinaryConvert(0.2)10tobinary
(0.2)10=[0.001100110011….]2……high……low0.2×2=0.400.4×2=0.800.8×2=1.610.6×2=1.210.2×
2=0.400.4×2=0.800.8×2=1.610.6×2=1.212、Conversionbetweennumbersof
differentrepresentationsexampleFractionalpart3)others
binaryoctalbinary
hexadicimal
000
0 0000 0 10008 001
1 0001 1 10019 0102 0010 2 1010A 0113 0011 3 1011B 1004 0100 4 1100C 1015 0101 5 1101D 1106 0110 6 1110E 1117 0111 7 1111F2、Conversionbetweennumbersof
differentrepresentationsEx1:convertbinarytooctal(10110111.01101)2Ex2:convertoctaltobinary(123.46)8 =(001,010,011.100,110)2 =(1010011.10011)2octal:267.32binary:010,110,111.011,010binary:10,110,111.011,01=(267.32)82、Conversionbetweennumbersof
differentrepresentationsEx2.2Ex2.3Ex3:convertbinarytohexadecimal(110110111.01101)2Ex4:converthexadecimaltobinary(7AC.DE)16 =(0111,1010,1100.1101,1110)2
=(11110101100.1101111)2Hexa-:1B7.68binary:0001,1011,0111.0110,1000binary:1,1011,0111.0110,1=(1B7.68)162、Conversionbetweennumbersof
differentrepresentationsEx2.4Ex2.52.3representationof
fixed-pointsignednumbersForimplementationofarithmeticoperationsonsignednumbersinacomputer,weneedrules:Howtodenotethesignofanumber‘0’forpositive‘1’fornegativeAseparatesignbitisplacedatMSBpositionHowtorepresentthenumericalpartofanumberSign-Magnituderepresentation(符号数值表示,原码)Two’scomplementrepresentation(二进制补码)One’scomplementrepresentation(二进制反码)1.Sign-magnituderepresentation(原码)“0”
standfor+,“1”
standfor–decimalExample: X1=+0.1011011
X2=-0.1011011[X1]signmag
=0.1011011[X2]signmag
=1.10110111.Sign-magnituderepresentation(原码)“0”
standfor+,“1”
standfor–IntegerExample: X1=+01011011
X2=-01011011
[X1]sign-mag=01011011[X2]sign-mag
=11011011Rangeofdecimal[+0]=0.0000000;[-0]=1.0000000-(1-2-(n-1))~1-2-(n-1)Number:2n-
1Lengthofwordis8:range:-(1-2-7)~(1-2-7)
-127/128
~
127/128, amount:2550.11111111.11111111.Sign-magnituderepresentation(原码)Rangeofinteger[+0]=00000000;[-0]=10000000-(2n-1-1)~2n-1-1Number:2n-
Wordlength8:max127,min-127,number255Wordlength16:max32767,min-32767,number655351.Sign-magnituderepresentation(原码)Characterofsign-magnituderepresentationSimpletorepresent,easytomultiply/divideoperationHardtoadd/suboperationRequirescomparingthesignbitsoftwooperandsAnalternativeway,2’scomplementrepresentation1.Sign-magnituderepresentation(原码)origin:
transformthesubtractoperationtoadd:
253
— 176 ???2.Two’scomplementrepresentation(补码)999— 176 823
253
— 176
2.Two’scomplementrepresentation(补码)
253+ 999+1— 176—1000
253+ 823+1
—1000824iscomplementof-176withrespectto1000SubToadd253-176=77binaryformationof253
is11111101;binaryformationof176is10110000;
11111101 11111101- 10110000 + 11111111+1 - 10110000 Addthecomplement,Iftheresultisoverflow,thehighestpositionisdroppedautomatically.2.Two’scomplementrepresentation(补码)补码的补充说明:
就象我们前面所演示给大家看的,补码的发现其实是为了消灭减法。正数根本不需要什么补码,补码是一个减法的差,所以求一个数的补码就是做一个减法。
2.Two’scomplementrepresentation(补码)DecimalExample:
X1=+0.1011011
X2=-0.1011011
[X1]2‘scompl=0.1011011[X2]2‘scompl
=1.01001012.Two’scomplementrepresentation(补码)IntegerExample: X1=+01011011
X2=-01011011[X1]2‘scompl
=01011011[X2]2‘scompl
=
101001012.Two’scomplementrepresentation(补码)Rangeofcomplementrepresentation:integer:-2n-1to2n-1-1decimal:-1
to1-2-n-1Number:2nWordlength8:Range:-128~127
-1~127/1282.Two’scomplementrepresentation(补码)Conversionbetweensign-magand2’scomplpositive[X]2’scomple=[X]sign-magnegativeoppositeallbitexceptthesignbit,add1ex:X=-01001001
[X]sign-mag=11001001
[X]2’scompl=10110110+1=101101112.Two’scomplementrepresentation(补码)Given[X]2’scompl,get[-X]2’scompl
(求机器负数)Subtractiontoaddition[X]2’scompl
-[Y]2’scompl
=[X]2’scompl
+[-Y]2’scompl
X=(11)10Y=(5)10,wordlengthn=5,soluteX-Y=?Solute:[X]2’scompl-[Y]2’scompl
=[X]2’scompl
+[-Y]2’scompl
X=(11)10=(01011)2Y=(5)10=(00101)2-Y=(11011)2
[X]2’scompl-[Y]2’scompl
=01011+11011=100110=00110=(6)10
note:dropthehighestbit,whichexceedsthewordlength2.Two’scomplementrepresentation(补码)exampleGiven[X]2’scompl,get[-X]2’scompl
(求机器负数)oppositeallbitswithsign,add1Ex:X=+1001001(wordlengthN=8)
[X]2’scompl=01001001
[-X]2’scompl=101101112.Two’scomplementrepresentation(补码)positivethesign‘0’atMSBisattachedtothemagnitudeintheremainingn-1bits.Negativethesign‘1’atMSBisattachedtothe1’scomplofthemagnitudeintheremainingn-1bits.decimal:X1=+0.1011011,[X1]1’scompl=0.1011011X2=-0.1011011,[X2]1’scompl=1.0100100integer:X3=+1011011,[X3]1’scompl=01011011X4=-1011011,[X4]1’scompl
=10100100[+0]1’scompl
=00000000;[-0]1’scompl
=111111113.One’scomplementrepresentation(反码)example2-1、Givethesign-mag、1’scompl、2’scompl
representationofthefollownumber(wordlengthis8),whereMSBisthehighestbit(signbit),LSBisthelowestbit。Ifthenumberisdecimal,thedecimalpointisbehindtheMSB;ifthenumberisinteger,thenthedecimalpointisbehindtheLSB. (1)–35/64 (2)23/128 (3)–127 (4)–1(decimalrepresentation) (5)–1(integerrepresentation)2.4Fixed-pointaddition/subtractionSign-magnitudeadd/subCompare:signofA=signB?SamesignTest:AplusorminusB?differentsignTest:AplusorminusB?YesNo|A|+|B|,takesignofA+_Carryout=1Carryout=0overflowResultok|A|-|B|,takesignofA+Carryout=1ResultokCarryout=02’scompltheresult;Reversethesign_Fig2.4theflowchartofthealgorithmforsign-magnitudeadd/sub2.4Fixed-pointaddition/subtraction2’scomplementadd/subsignbitisalsoinvolvedincomputingIstheoperationdecidedbyopcode?Doestheresultneedamending?Howtotransformthesubtractiontoaddition??2’scomplementadd/sub①basicrules
[X+Y]2’scompl=[X]2’scompl+[Y]2’scompl
(1)
[X-
Y]2’scompl
=[X]2’scompl+[-Y]2’scompl
(2)(1):whenopcodeis“+”,addtwonumbersdirectly(2):whenopcodeis”-”,sub..—>add..
[Y]2’scompl
[–Y]2’scompl
:
Nomatter
Y2’scompl
ispositiveofnegative,oppositeallbits,andadd1onitsendbit.2.4Fixed-pointaddition/subtraction2’scomplementadd/sub②processOperandis2’scomplementformatinvolvingsignbitResultis2’scomplementformatsignbitindicatesthesignoftheresult[X]2’scompl
+[Y]2’scompl[X]
2’scompl
+[-Y]
2’scomplADDSUB2.4Fixed-pointaddition/subtractionOverflowjudgmentwhichsituationcausesoverflow?Overflow:resultexceedstherangeofrepresentation.Obviously,additionwithtwooppositesignandsubtractionwithtwosamesignwillnotcauseoverflow.Overflowmustbecaught.2.4Fixed-pointaddition/subtractionOverflowjudgmentAssumetwosignednumbers [A]2’scompl=[SaAn-2…
A1A0]2’scompl[B]2’scompl=[SbBn-2…
B1B0]2’scomplSA
A3A2A1A0SB
B3
B2B1B0SF
F3F2F1F0CCF2.4Fixed-pointaddition/subtractioncorrect0001100010(1)A=3B=23+2:00101(2)A=10B=710+7:010100011110001underflowcorrectoverflowcorrectcorrect(3)A=-3B=-2-3+(-2):110111110111110(4)A=-10B=-7-10+(-7):011111011011001(5)A=6B=-46+(-4):000100011011100(6)A=-6B=4-6+4:111101101000100Overflowjudgment2.4Fixed-pointaddition/subtraction(2)A=10B=710+7:01010
0011110001(4)A=-10B=-7-10+(-7):011111011011001①Judgmentlogicbyhardware1(SA、SBandSf)OF=SASBSfSASfSB②Judgmentlogicbyhardware2
(Cf
andC)Overflowjudgment2.4Fixed-pointaddition/subtractioncorrect0001100010(1)A=3B=23+2:00101(2)A=10B=710+7:010100011110001overflowcorrectunderflowcorrectcorrect(3)A=-3B=-2-3+(-2):110111110111110(4)A=-10B=-7-10+(-7):011111011011001(5)A=6B=-46+(-4):000100011011100(6)A=-6B=4-6+4:111101101000100Cf=0C=0Cf=0C=1Cf=1C=1Cf=1C=0Cf=1C=1Cf=0C=01111112.4Fixed-pointaddition/subtractionOverflowjudgmentOF=SASBSfSASfSBOF=CfC③Judgmentlogicbyhardware3
(doublesignbit)2.4Fixed-pointaddition/subtractionOverflowjudgment①Judgmentlogicbyhardware1(SA、SBandSf)②Judgmentlogicbyhardware2
(Cf
andC)(1)3+2:correct000011000010000101(2)10+7:001010000111010001overflowcorrectunderflowcorrectcorrect(3)-3+(-2):110111111101111110(4)-10+(-7):101111110110111001(5)6+(-4):000010000110111100(6)-6+4:111110111010000100FirstSf1SecondSf22.4Fixed-pointaddition/subtractionOverflowjudgmentOF=SASBSfSASfSBOF=CfCOF=Sf1Sf22.4Fixed-pointaddition/subtractionOverflowjudgment①Judgmentlogicbyhardware1(SA、SBandSf)②Judgmentlogicbyhardware2
(Cf
andC)③Judgmentlogicbyhardware3
(doublesignbit)2.5Othercodesystems1.GrayCodes(unweightedcodesystem)b3b2b1b0comments0000000121axis0011001022axis0110011121axis0101010023axis1100110121axis1111111022axis1010101121axis100110002.5Othercodesystems1.GrayCodes(unweightedcodesystem)Properties:Anytwosuccessivecodeshaveonlyonebitchanging.Generatesmoothlyvaryingcontrolsignals,analog-digitalconversionsignals,etc.Thecodeisreflective.DeriveanysubsetoftheGraycode.Removing6codesbetween0110and1110Removing4codesbetween0001and01012.5Othercodesystems1.GrayCodes(unweightedcodesystem)b3b2b1b0comments0000000121axis0011001022axis0110011121axis0101010023axis1100110121axis1111111022axis1010101121axis100110002.5Othercodesystems1.GrayCodes(unweightedcodesystem)b3b2b1b0comments0000000121axis0011001022axis0110011121axis0101010023axis1100110121axis1111111022axis1010101121axis100110002.5Othercodesystems1.GrayCodes(unweightedcodesystem)转换(补充)格雷码转二进制最高位不变,保留到最高位,再将异或的值和下一位相异或,结果保留到下一位,依次异或,直到最低位。01100100⊕⊕⊕11101011⊕⊕⊕格雷码二进制2.5Othercodesystems1.GrayCodes(unweightedcodesystem)转换(补充)二进制转格雷码保留自然二进制码的最高位作为格雷码的最高位,而次高位格雷码为二进制码的高位与次高位相异或,而格雷码其余各位与次高位的求法相类似。01100101⊕⊕⊕11101001⊕⊕⊕格雷码二进制2.5Othercodesystems九连环的全部状态
第0个状态: 000000000格雷码:000000000二进制数:000000000
动作P,状态1: 100000000格雷码:000000001二进制数:000000001
动作Q,状态2: 110000000格雷码:000000011二进制数:000000010
动作P,状态3: 010000000格雷码:000000010二进制数:000000011
动作Q,状态4: 011000000格雷码:000000110二进制数:000000100
动作P,状态5: 111000000格雷码:000000111二进制数:000000101
动作Q,状态6: 101000000格雷码:000000101二进制数:000000110
动作P,状态7: 001000000格雷码:000000100二进制数:000000111
动作Q,状态8: 001100000格雷码:000001100二进制数:000001000
动作P,状态9: 101100000格雷码:000001101二进制数:000001001
动作Q,状态10: 111100000格雷码:000001111二进制数:000001010
动作P,状态11: 011100000格雷码:000001110二进制数:000001011
动作Q,状态12: 010100000格雷码:000001010二进制数:000001100
动作P,状态13: 110100000格雷码:000001011二进制数:000001101
动作Q,状态14: 100100000格雷码:000001001二进制数:0000011102.5Othercodesystems2.Decimalcodes(1)Itisaweightedcodewiththesameweightsassignedtoitsfourbitsasthoseassignedtobinarynumbers.Binary-coded-decimal(BCD)codeisalsocalled8421codeValue:N=8d3+4d2+2d1+1d0 Forexample:BCDcodeof
(63.29)10is:01100011.001010012.5Othercodesystems2.DecimalcodesThealgorithmofone-digitBCDaddition:AddtwoBCDdigitsusingbinaryarithmetic;BCDadditionneedscorrection,add(0110)2;result>9【1001】createacarryElsenocorrectionoftheresultisnecessarysavethecarrygeneratedduringeitheroneofthetwoadditiontimes2.DecimalcodesExample:① 1+8=90001+10001001Nocorrection② 4+9=130100+1001
1101+0110correction10011carry③ 9+7=161001+011110000+0110correction10110carry2.5Othercodesystems2.5Othercodesystems2.DecimalcodesThealgorithmofone-digitBCDsubtraction:In10’scomplementrepresentationCanbereplacedbyBCDadditionSpecialhardwareisneededfortransformingaBCDdigittoits9’scomplement2.5Othercodesystems2.DecimalcodesSigneddecimalnumberscanberepresented:Sign-magnitude10’scomplement9’scomplementThesigndigitcanberepresentedinvariousways:E.g.selectingthenotationofthesignfromtheremaining4-bitcodesnotusedbydigits0to91010,1100,1110forpositiveand1011,1101,1111fornegative2.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年金融机构与中小企业公对公信用贷款合同3篇
- 美食广场食品安全检测制度
- 交通运输设备采购招投标流程
- 网络安全防护指南
- 填筑土方施工合同
- 仓储物流中心续租合同
- 2024年水电设备安全认证与检测服务合同3篇
- 金融行业总监理合同模板
- 房屋共同使用权保险合同
- 医疗设备采购项目承揽
- 成人经鼻高流量湿化氧疗临床规范应用专家共识解读
- 2024信息技术应用创新信息系统适配改造成本度量
- 广东省广州市2025届高三上学期12月调研测试(零模)英语 含解析
- 陕西测绘地理信息局所属事业单位2025年上半年招聘87人和重点基础提升(共500题)附带答案详解
- 保险学期末试题及答案
- 高一数学上学期期末模拟试卷01-【中职专用】2024-2025学年高一数学上学期(高教版2023基础模块)(解析版)
- 《外伤性颅内积气》课件
- 2024-2025学年人教版八年级上册地理期末测试卷(一)(含答案)
- 统编版(2024新版)七年级上册道德与法治第四单元综合测试卷(含答案)
- 沪教版英语小学六年级上学期期末试题与参考答案(2024-2025学年)
- 北京市海淀区2023-2024学年四年级上学期语文期末试卷
评论
0/150
提交评论