版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年平顶山职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为72.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.3.下列给出的输入语句、输出语句和赋值语句
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)赋值语句3=B
(4)赋值语句A=B=2
则其中正确的个数是()
A.0个
B.1个
C.2个
D.3个答案:A4.已知向量a,b满足|a|=2,|b|=3,|2a+b|=则a与b的夹角为()
A.30°
B.45°
C.60°
D.90°答案:C5.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.6.下面是一个算法的伪代码.如果输出的y的值是10,则输入的x的值是______.答案:由题意的程序,若x≤5,y=10x,否则y=2.5x+5,由于输出的y的值是10,当x≤5时,y=10x=10,得x=1;当x>5时,y=2.5x+5=10,得x=2,不合,舍去.则输入的x的值是1.故为:1.7.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.8.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.9.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A10.函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为
______.答案:∵y=ax与y=loga(x+1)具有相同的单调性.∴f(x)=ax+loga(x+1)在[0,1]上单调,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=12故为:1211.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,则的位置关系为()
A.相切
B.相离
C.相交
D.内含答案:C12.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:
907966191925271932812458569683
431257393027556488730113537989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(
)。答案:0.2513.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C14.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).15.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.16.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(
)。答案:3:117.设双曲线C:x2a2-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且PA=512PB.求a的值.答案:(I)由C与l相交于两个不同的点,故知方程组x2a2-y2=1x+y=1.有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.双曲线的离心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即离心率e的取值范围为(62,2)∪(2,+∞).(II)设A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1•x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.18.72的正约数(包括1和72)共有______个.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数.m的取法有4种,n的取法有3种,由分步计数原理共3×4个.故为:12.19.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.20.设a,b,c是正实数,求证:aabbcc≥(abc)a+b+c3.答案:证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc.据排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.21.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.22.(本小题满分10分)数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1000的所有“水仙花数”.
(1)用自然语言写出算法;
(2)画出流程图.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,则执行第三步,否则算法结束.第三步,若这个数i等于它各位上的数字的立方的和,则输出这个数.第四步,i=i+1,返回第二步.(2)程序框图,如右图所示.23.抛物线y2=4x的焦点坐标为()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B24.已知M和N分别是四面体OABC的边OA,BC的中点,且,若=a,=b,=c,则用a,b,c表示为()
A.
B.
C.
D.
答案:B25.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C26.已知抛物线方程为y2=2px(p>0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A,B两点,过点A,点B分别作AM,BN垂直于抛物线的准线,分别交准线于M,N两点,那么∠MFN必是()
A.锐角
B.直角
C.钝角
D.以上皆有可能答案:B27.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.28.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是______.答案:每个个体被抽到的概率是
20240=112,那么从甲部门抽取的员工人数是60×112=5,故为:5.29.方程x2+y2=1(xy<0)的曲线形状是()
A.
B.
C.
D.
答案:C30.设,则之间的大小关系是
.答案:b>a>c解析:略31.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()
A.B与C互斥
B.A与C互斥
C.任意两个事件均互斥
D.任意两个事件均不互斥答案:B32.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.33.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.34.直线3x+5y-1=0与4x+3y-5=0的交点是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C35.已知x,y的取值如下表所示:
x3711y102024从散点图分析,y与x线性相关,且y=74x+a,则a=______.答案:∵线性回归方程为y=74x+a,,又∵线性回归方程过样本中心点,.x=3+7+113=7,.y=10+20+243=18,∴回归方程过点(7,18)∴18=74×7+a,∴a=234.故为:234.36.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)37.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C38.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.39.(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______.答案:∵PA是圆O的切线,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圆O的直径2R=4∴圆O的面积S=πR2=4π故为:4π.40.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()
A.
B.
C.
D.4
答案:B41.双曲线x2a2-y2b2=1,(a>0,b>0)的一条渐近线方程是y=3x,坐标原点到直线AB的距离为32,其中A(a,0),B(0,-b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N,求B1M⊥B1N时,直线MN的方程.答案:(1)∵A(a,0),B(0,-b),∴设直线AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴双曲线方程为:x23-y29=1.(2)∵双曲线方程为:x23-y29=1,∴A1(-3,0),A2(3,0),设P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),设M(x1,y1),N(x2,y2)∴设直线l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M•B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴lMN:y=±5x-3.42.已知f(x)=,则不等式xf(x)+x≤2的解集是(
)。答案:{x|x≤1}43.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()
A.
B.
C.
D.答案:D44.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:
(1)与a相等的向量有
______;
(2)与b相等的向量有
______;
(3)与c相等的向量有
______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.45.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A46.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.47.“a=2”是“直线ax+2y=0平行于直线x+y=1”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件答案:C48.如果e1,e2是平面a内所有向量的一组基底,那么()A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间任一向量可以表示为a=λ1e1+λ2e2,这里λ1,λ2∈RC.对实数λ1,λ2,λ1e1+λ2e2不一定在平面a内D.对平面a中的任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案:∵由基底的定义可知,e1和e2是平面上不共线的两个向量,∴实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0,不是空间任一向量都可以表示为a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示为a=λ1e1+λ2e2的形式,此时实数λ1,λ2有且只有一对,而对实数λ1,λ2,λ1e1+λ2e2一定在平面a内,故选A.49.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.50.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.
①上海地区面积的70%至80%将降雨;
②上海地区下雨的时间在16.8小时至19.2%小时之间;
③上海地区在相似的气候条件下有70%至80%的日子是下雨的;
④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③第2卷一.综合题(共50题)1.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.2.{,,}是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,}②{,,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.
A.1
B.2
C.3
D.4答案:C3.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)4.条件语句的一般形式如图所示,其中B表示的是()
A.条件
B.条件语句
C.满足条件时执行的内容
D.不满足条件时执行的内容
答案:C5.如图,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为
______度.答案:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等边三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故为:30.6.斜二测画法的规则是:
(1)在已知图形中建立直角坐标系xoy,画直观图
时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;
(2)
已知图形中平行于x轴或y轴的线段,在直观图中分别画成
______;
(3)已知图形中平行于x轴的线段的长度,在直观图中
______;平行于y轴的线段,在直观图中
______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半7.棱长为a的正四面体中,AB•BC+AC•BD=______.答案:棱长为a的正四面体中,AB=BC=a,且AB与BC的夹角为120°,AC⊥BD.∴AB•BC+AC•BD=a•acos120°+0=-a22,故为:-12.8.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()
A.
B.
C.
D.答案:D9.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.10.以下坐标给出的点中,在曲线x=sin2θy=sinθ+cosθ上的点是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲线x=sin2θy=sinθ+cosθ消去参数θ,化为普通方程为y2=1+x(-1≤x≤1),结合所给的选项,只有C中的点在曲线上,故选C.11.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.12.已知椭圆的参数方程为(ϕ为参数),点M在椭圆上,点O为原点,则当ϕ=时,OM的斜率为()
A.1
B.2
C.
D.2答案:D13.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.14.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25615.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)16.
以下四组向量中,互相平行的有()组.
A.一
B.二
C.三
D.四答案:D17.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()
A.3
B.4
C.5
D.6答案:C18.若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D19.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+420.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C21.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为
π3.22.在正方体ABCD-A1B1C1D1中,若E为A1C1中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A为原点,AB、AD、AA1所在直线分别为x,y,z轴建空间直角坐标系,设正方体棱长为1,则A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),显然CE•BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故选B.23.如图:已知圆上的弧
AC=
BD,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)24.方程4x-3×2x+2=0的根的个数是(
)
A.0
B.1
C.2
D.3答案:C25.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3326.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B27.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.28.编程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND29.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)30.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:631.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B32.求证:定义在实数集上的单调减函数y=f(x)的图象与x轴至多只有一个公共点.答案:证明:假设函数y=f(x)的图象与x轴有两个交点…(2分)设交点的横坐标分别为x1,x2,且x1<x2.因为函数y=f(x)在实数集上单调递减所以f(x1)>f(x2),…(6分)这与f(x1)=f(x2)=0矛盾.所以假设不成立.
…(12分)故原命题成立.…(14分)33.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.34.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.35.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()
A.
B.
C.
D.答案:B36.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣137.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?
(1)输出语句INPUT
a;b;c
(2)输入语句INPUT
x=3
(3)输出语句PRINT
A=4
(4)输出语句PRINT
20.3*2
(5)赋值语句3=B
(6)赋值语句
x+y=0
(7)赋值语句A=B=2
(8)赋值语句
T=T*T.答案:(1)输入语句
INPUT
a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT
x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT
A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT
20.3*2符合规则,正确;(5)赋值语句
3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句
x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句
A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句
T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).38.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两种果树至少有一种成苗的概率为;(2).恰好有一种果树培育成苗且移栽成活的概率为.解析:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,,,,,.(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,.恰好有一种果树培育成苗且移栽成活的概率为.解法二:恰好有一种果树栽培成活的概率为.39.给定两个长度为1的平面向量OA和OB,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧AB上变动,若OC=xOA+yOB,其中x,y∈R,则xy的范围是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而点C在以O为圆心的圆弧AB上变动,得x,y∈[0,1],于是,0≤xy≤12,故为[0,12].40.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()
A.3,
B.3,
C.2,
D.2,1答案:C41.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()
A.
B.
C.或
D.或答案:C42.在数学归纳法证明多边形内角和定理时,第一步应验证()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C43.如图,在圆锥中,B为圆心,AB=8,BC=6
(1)求出这个几何体的表面积;
(2)求出这个几何体的体积.(保留π)答案:圆锥母线AC的长=AB2+BC2=82+62=10(1)表面积=π×62+π×6×10=96π(2)体积=13×π×62×8=96π44.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.45.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A.∵|x-5|+|x+3|≥10,∴当x≥5时,x-5+x+3≥10,∴x≥6;当x≤-3时,有5-x+(-x-3)≥10,∴x≤-4;当-4<x<5时,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴该圆的圆心的直角坐标为(-1,0),∴其极坐标是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依题意,由相交线定理得:AF•FB=DF•FC,∴AF×2=22×22,∴AF=4;又∵CE与圆相切,∴|CE|2=|EB|•|EA|=1×(1+2+4)=7,∴|CE|=7.故为:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.46.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且则C的坐标为()
A.
B.
C.
D.答案:C47.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:
第一步:取A=89,B=96,C=99;
第二步:______;
第三步:______;
第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.48.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为
______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:7649.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.50.直角△PIB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若弧AB等分△POB的面积,且∠AOB=α弧度,则(
)
A.tanα=α
B.tan=2α
C.sinα=2cosα
D.2sin=cosα答案:B第3卷一.综合题(共50题)1.设f(x)=ex(x≤0)ln
x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.2.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.3.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}4.已知向量=(2,4,x),=(2,y,2),若||=6,
⊥,则x+y的值是()
A.-3或1
B.3或1
C.-3
D.1答案:A5.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
(1)他罚球1次的得分X的数学期望;
(2)他罚球2次的得分Y的数学期望;
(3)他罚球3次的得分η的数学期望.答案:(1)X的取值为1,2,则因为P(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值为0,1,2,则P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列为Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值为0,1,2,3,则P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布为η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.6.已知矩阵A=b-2-7a的逆矩阵是B=a273,则a+b=______.答案:根据矩阵A=b-2-7a的逆矩阵是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故为:8.7.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).8.方程x2-y2=0表示的图形是()
A.两条相交直线
B.两条平行直线
C.两条重合直线
D.一个点答案:A9.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.10.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201611.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.12.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.13.有以下四个结论:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,则x=e2;
④ln(lg1)=0.
其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A14.直线kx-y+1=3k,当k变动时,所有直线都通过定点[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A15.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:1618或138216.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.17.要证明,可选择的方法有以下几种,其中最合理的是()
A.综合法
B.分析法
C.反证法
D.归纳法答案:B18.下列命题中,正确的是()
A.若a∥b,则a与b的方向相同或相反
B.若a∥b,b∥c,则a∥c
C.若两个单位向量互相平行,则这两个单位向量相等
D.若a=b,b=c,则a=c答案:D19.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B20.如图,四面体ABCD中,点E是CD的中点,记=(
)
A.
B.
C.
D.
答案:B21.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C22.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.23.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.24.在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?答案:沿圆柱体的母线MN将圆柱的侧面剪开辅平,得出圆柱的侧面展开图,从M点绕圆柱体的侧面到达N点,实际上是从侧面展开图的长方形的一个顶点M到达不相邻的另一个顶点N.而两点间以线段的长度最短.所以最短路线就是侧面展开图中长方形的一条对角线.如图所示.25.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.26.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.27.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
据以上数据估计两人的技术稳定性,结论是()
A.甲优于乙
B.乙优于甲
C.两人没区别
D.无法判断答案:A28.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.29.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C30.下列各图中,可表示函数y=f(x)的图象的只可能是()A.
B.
C.
D.
答案:根据函数的定义知:自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应.∴从图象上看,任意一条与x轴垂直的直线与函数图象的交点最多只能有一个交点.从而排除A,B,C,故选D.31.已知|a|=1,|b|=2,a与b的夹角为60°,则a+b在a方向上的投影为______.答案:∵|a|=1,|b|=2,a与b的夹角为60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.设a+b与a的夹角为θ,则∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影为|a+b|cosθ=7×277=2故为:232.如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.答案:证明:(Ⅰ)连接OP,OM.因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的内部,可知四边形M的对角互补,所以A,P,O,M四点共圆.(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.又∵A,P,O,M四点共圆∴∠OPM=∠OAM所以∠OAM+∠APM=90°.33.若向量a、b的夹角为150°,|a|=3,|b|=4,则|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故为:234.(x+2y)4展开式中各项的系数和为______.答案:令x=y=1,可得(1+2)4=81故为:81.35.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.36.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()
A.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水电工程安全协议样本
- 长期汽车销售购销合同
- 建设银行个人贷款合同
- 墙体涂料工程分包合同
- 新版购销合同的条款列举
- 茶叶物联网应用合同
- 废料买卖合同协议
- 临时兼职合同书
- 债权债务转让协议法律分析
- 程序员保密协议的案例解析
- 模具开发FMEA失效模式分析
- 年产40万吨灰底涂布白板纸造纸车间备料及涂布工段初步设计
- 1-3-二氯丙烯安全技术说明书MSDS
- 学生思想政治工作工作证明材料
- 一方出资一方出力合作协议
- 污水处理药剂采购投标方案(技术方案)
- 环保设施安全风险评估报告
- 数字逻辑与计算机组成 习题答案 袁春风 第3章作业批改总结
- 要求降低物业费的申请书范本
- 焊接机器人行业分析研究报告
- PI形式发票范文模板
评论
0/150
提交评论