2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析_第1页
2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析_第2页
2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析_第3页
2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析_第4页
2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年山东特殊教育职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设a=(4,3),a在b上的投影为522,b在x轴上的投影为2,且|b|≤14,则b为()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x轴上的投影为2,∴设b=(2,y)∵a在b上的投影为522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故选B2.在y=2x,y=log2x,y=x2,y=cosx这四个函数中,当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A.0B.1C.2D.3答案:当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立,说明函数一个递增的越来越慢的函数或者是一个递减的越来越快的函数或是一个先递增得越来越慢,再递减得越来越快的函数考查四个函数y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是递增得越来越慢型,函数y=cosx在(0,1)是递减得越来越快型,y=2x,y=x2,这两个函数都是递增得越来越快型综上分析知,满足条件的函数有两个故选C3.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.4.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.5.已知命题p:“有的实数没有平方根.”,则非p是______.答案:∵命题p:“有的实数没有平方根.”,是一个特称命题,非P是它的否定,应为全称命题“所有实数都有平方根”故为:所有实数都有平方根.6.三个数a=60.5,b=0.56,c=log0.56的大小顺序为______.(按大到小顺序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故为a>b>c.7.下列说法中正确的有()

①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;

②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大

③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.

④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.A.①②B.③C.③④D.④答案:中位数数不受少数几个极端值的影响,平均数受样本中的每一个数据影响,故①不正确,抛掷两枚硬币,出现“两枚都是正面朝上”的概率是14“两枚都是反面朝上的概率是14、“恰好一枚硬币正面朝上的概率是12”,故②不正确,用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.正确向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型,故④不正确,故选B.8.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.9.已知矩阵A=12-14,向量a=74.

(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;

(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)10.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.11.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),则(a+b)•c=______.答案:由于a=(3,3,2),b=(4,-3,7),则a+b=(7,0,9)又由c=(0,5,1),则(a+b)•c=(7,0,9)•(0,5,1)=9故为912.某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.

(Ⅰ)建立坐标系并写出该双曲线方程;

(Ⅱ)求冷却塔的容积(精确到10m3,塔壁厚度不计,π取3.14).答案:(I)如图建立直角坐标系xOy,AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.设双曲线方程为x2a2-y2b2=1(a>0,b>0),则a=12AA′=7.又设B(11,y1),C(9,y2),因为点B、C在双曲线上,所以有11272-y21b2=1,①9272-y22b2=1,②由题意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故双曲线方程为x249-y298=1;(II)由双曲线方程得x2=12y2+49.设冷却塔的容积为V(m3),则V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷却塔的容积为4.25×103(m3).13.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1014.已知点M(1,2),N(1,1),则直线MN的倾斜角是()A.90°B.45°C.135°D.不存在答案:∵点M(1,2),N(1,1),则直线MN的斜率不存在,故直线MN的倾斜角是90°,故选A.15.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角坐标系xAy中,动点P的轨迹方程是______.答案:作PN⊥AD,则PN⊥面A1D1DA,作NH⊥A1D1,N,H为垂足,由三垂线定理可得PH⊥A1D1.以AD,AB,AA1为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故为:x2=2y+8.16.极坐标方程ρcos2θ=0表示的曲线为()

A.极点

B.极轴

C.一条直线

D.两条相交直线答案:D17.如图给出的是计算1+13+15+…+12013的值的一个程序框图,图中空白执行框内应填入i=______.答案:∵该程序的功能是计算1+13+15+…+12013的值,最后一次进入循环的终值为2013,即小于等于2013的数满足循环条件,大于2013的数不满足循环条件,由循环变量的初值为1,步长为2,故执行框中应该填的语句是:i=i+2.故为:i+2.18.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.19.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c220.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.21.已知x,y的取值如下表所示:

x3711y102024从散点图分析,y与x线性相关,且y=74x+a,则a=______.答案:∵线性回归方程为y=74x+a,,又∵线性回归方程过样本中心点,.x=3+7+113=7,.y=10+20+243=18,∴回归方程过点(7,18)∴18=74×7+a,∴a=234.故为:234.22.已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.答案:设M=abcd,则abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)23.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()

A.

B.

C.

D.2答案:A24.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()

A.梯形

B.圆外切四边形

C.圆内接四边

D.任意四边形答案:B25.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。26.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A27.如图,从圆O外一点P引两条直线分别交圆O于点A,B,C,D,且PA=AB,PC=5,CD=9,则AB的长等于______.答案:∵PAB和PBC是圆O的两条割线∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故为:3528.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.29.当a>0时,不等式组的解集为(

)。答案:当a>时为;当a=时为{};当0<a<时为[a,1-a]30.将一枚均匀硬币

随机掷20次,则恰好出现10次正面向上的概率为()

A.

B.

C.

D.答案:D31.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为1532.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.33.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.34.已知随机变量ξ服从正态分布N(2,a2),且P(ξ<4)=0.8,则P(0<ξ<2)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:C35.在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=______.答案:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB+AD=AC,又O为AC的中点,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故为:2.36.过点A(-1,4)作圆C:(x-2)2+(y-3)2=1的切线l,求切线l的方程.答案:设方程为y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切线l的方程为y=4或3x+4y-13=037.若e1、e2、e3是三个不共面向量,则向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?请说明理由.答案:解:设c=1a+2b,则即∵a、b不共线,向量a、b、c共面.38.已知△ABC的顶点坐标分别为A(2,3),B(-1,0),C(2,0),则△ABC的周长是()

A.2

B.6+

C.3+2

D.6+3答案:D39.(文)函数f(x)=x+2x(x∈(0

2

]

)的值域是______.答案:f(x)=x+2x≥

22当且仅当x=2时取等号该函数在(0,2)上单调递减,在(2,2]上单调递增∴当x=2时函数取最小值22,x趋近0时,函数值趋近无穷大故函数f(x)=x+2x(x∈(0

2

]

)的值域是[22,+∞)故为:[22,+∞)40.如图①y=ax,②y=bx,③y=cx,④y=dx,根据图象可得a、b、c、d与1的大小关系为()

A.a<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a<b<1<d<c

答案:B41.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.8答案:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.42.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()

A.

B.

C.

D.答案:D43.(理)已知函数f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是______.答案:作出函数的图象如图,直线y=y0交函数图象于如图,由正弦曲线的对称性,可得A(a,y0)与B(b,y0)关于直线x=12对称,因此a+b=1当直线线y=y0向上平移时,经过点(2011,1)时图象两个图象恰有两个公共点(A、B重合)所以0<y0<1时,两个图象有三个公共点,此时满足f(a)=f(b)=f(c),(a、b、c互不相等),说明1<c<2011,因此可得a+b+c∈(2,2012)故为(2,2012)44.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.45.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()

A.5

B.6

C.7

D.8答案:C46.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C47.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元.

若使每个同学游8次,每人最少应交多少元钱?答案:设买x张游泳卡,总开支为y元,则每批去x名同学,共需去48×8x=384x批,总开支又分为:①买卡所需费用240x;②包车所需费用384x×40.∴y=240x+384x×40(0<x≤48,x∈Z).因此,y=240(x+64x)≥240×2x?64x=3840当且仅当x=64x时,即x=8时取等号.∴当x=8时,总开支y的最大值为3840元,此时每人最少应交384048=80(元).答:若使每个同学游8次,每人最少应交80元钱.48.在极坐标系中,过点(22,π4)作圆ρ=4sinθ的切线,则切线的极坐标方程是______.答案:(22,π4)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2故为:ρcosθ=249.

已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B50.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π第2卷一.综合题(共50题)1.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C2.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()

A.

B.

C.0

D.1答案:A3.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.4.

点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C5.某批n件产品的次品率为1%,现在从中任意地依次抽出2件进行检验,问:

(1)当n=100,1000,10000时,分别以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精确到0.00001)

(2)根据(1),谈谈你对超几何分布与二项分布关系的认识.答案:(1)当n=100时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.100件产品中次品数为1,正品数是99,从100件产品里抽2件,总的可能是C1002,次品的可能是C11C991.所以概率为C11C199C2100=0.2.当n=1000时,如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.1000件产品中次品数为10,正品数是990,从1000件产品里抽2件,总的可能是C10002,次品的可能是C101C9901.所以概率为是C110C1990C21000≈0.0198.如果放回,这是二项分布.抽到的2件产品中有1件次品1件正品,其概率为C21?0.01?0.99=0.0198.如果不放回,这是超几何分布.10000件产品中次品数为1000,正品数是9000,从10000件产品里抽2件,总的可能是C100002,次品的可能是C1001C99001.所以概率为C1100?C19900C210000≈0.0198.(2)对超几何分布与二项分布关系的认识:共同点:每次试验只有两种可能的结果:成功或失败.不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;

2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布.6.在语句PRINT

3,3+2的结果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B7.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.8.离心率e=23,短轴长为85的椭圆标准方程为______.答案:离心率e=23,短轴长为85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以椭圆标准方程为x2144+y280=1或y2144+x280=1故为x2144+y280=1或y2144+x280=19.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°10.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.11.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()

A.

B.

C.

D.答案:B12.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C13.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则A1B1=A2B2是l1∥l2的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:当A1B1=A2B2

时,两直线可能平行,也可能重合,故充分性不成立.当l1∥l2时,B1与B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.综上,A1B1=A2B2是l1∥l2的既非充分又非必要条件,故选D.14.下列程序表示的算法是辗转相除法,请在空白处填上相应语句:

(1)处填______;

(2)处填______.答案:∵程序表示的算法是辗转相除法,根据辗转相除法,先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,一直算到余数为零时m的值即可,∴(1)处应该为r=mMODn;(2)处应该为r=0.故为r=mMODn;r=0.15.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C16.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()

A.

B.

C.

D.答案:D17.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是______元.答案:设每台彩电的原价是x元,则有:(1+40%)x×0.8-x=270,解得:x=2250,故为:2250.18.设b是a的相反向量,则下列说法错误的是()

A.a与b的长度必相等

B.a与b的模一定相等

C.a与b一定不相等

D.a是b的相反向量答案:C19.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0

B=φA(2)当a=-1时△=0

B={0}A(3)当a>-1时△>0

要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=120.设d1与d2都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于d1与d2的叙述正确的是()A.d1=d2B.d1与d2同向C.d1∥d2D.d1与d2有相同的位置向量答案:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.21.已知一直线的斜率为3,则这条直线的倾斜角是()A.30°B.45°C.60°D.90°答案:设直线的倾斜角为α,由直线的斜率为3,得到:tanα=3,又α∈(0,180°),所以α=60°.故选C22.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,

.则⊙O的半径为(

).

A.6

B.13

C.

D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.23.已知双曲线的两渐近线方程为y=±32x,一个焦点坐标为(0,-26),

(1)求此双曲线方程;

(2)写出双曲线的准线方程和准线间的距离.答案:(1)由题意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故该双曲线的标准方程为y218-x28=1.(2)由(1)得,双曲线的准线方程为y=±1826x;准线间的距离为2a2c=2×1826=182613.24.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.25.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()

A.1

B.2

C.

D.3答案:C26.当x∈N+时,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.27.若a>0,b<0,直线y=ax+b的图象可能是()

A.

B.

C.

D.

答案:C28.已知正三角形的外接圆半径为63cm,求它的边长.答案:设正三角形的边长为a,则12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的边长为18cm.29.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.30.函数f(x)=2,0<x<104,10≤x<155,15≤x<20,则函数的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函数的值域是{2,4,5}故选B31.若不等式logax>sin2x(a>0,a≠1)对任意x∈(0,π4)都成立,则a的取值范围是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵当x∈(0,π4)时,函数y=logax的图象要恒在函数y=sin2x图象的上方∴0<a<1如右图所示当y=logax的图象过点(π4,1)时,a=π4,然后它只能向右旋转,此时a在增大,但是不能大于1故选B.32.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.33.已知A、B、C三点共线,A分的比为λ=-,A,B的纵坐标分别为2,5,则点C的纵坐标为()

A.-10

B.6

C.8

D.10答案:D34.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为

______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).35.某个几何体的三视图如图所示,则该几何体的体积是()A.23B.3C.334D.332答案:由三视图可知该几何体是直三棱柱,高为1,底面三角形一边长为2,此边上的高为3,所以V=Sh=12×2×3×1=3故选B.36.下列说法正确的是()

A.互斥事件一定是对立事件,对立事件不一定是互斥事件

B.互斥事件不一定是对立事件,对立事件一定是互斥事件

C.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大

D.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小答案:B37.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.38.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.39.某校有初中学生1200人,高中学生900人,教师120人,现用分层抽样方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中学生中抽取60人,那么n=______.答案:每个个体被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故为:148.40.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α41.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1542.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()

A.0.4

B.1.2

C.0.43

D.0.6答案:B43.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()

A.-2

B.2

C.-8

D.8答案:C44.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是

______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)45.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.46.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:147.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.48.要从10名女生与5名男生中选出6名学生组成课外活动小组,则符合按性别比例分层抽样的概率为()

A.

B.

C.

D.

答案:C49.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.50.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.第3卷一.综合题(共50题)1.(几何证明选做题)若A,B,C是⊙O上三点,PC切⊙O于点C,∠ABC=110°,∠BCP=40°,则∠AOB的大小为______.答案:∵PC切⊙O于点C,OC为圆的半径∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圆周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故为:60°2.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:3.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.4.椭圆的两个焦点坐标是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B5.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.6.已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C7.向量b与a=(2,-1,2)共线,且a•b=-18,则b的坐标为______.答案:因为向量b与a=(2,-1,2)共线,所以设b=ma,因为且a•b=-18,所以ma2=-18,因为|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故为:(-4,2,-4).8.若直线l的方程为x=2,则该直线的倾斜角是()A.60°B.45°C.90°D.180°答案:∵直线l的方程为x=2∴直线l与x轴垂直∴直线l的倾斜角为90°故选C9.已知直线的斜率为3,则此直线的倾斜角为()A.30°B.60°C.45°D.120°答案:∵直线的斜率为3,∴直线倾斜角α满足tanα=3结合α∈[0°,180°),可得α=60°故选:B10.设随机变量X~B(10,0.8),则D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C11.对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”现有四个函数:

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“稳定区间”的函数有()A.①②B.②③C.③④D.②④答案:①对于函数f(x)=ex若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.②对于f(x)=x3存在“稳定区间”,如x∈[0,1]时,f(x)=x3∈[0,1].③对于f(x)=sinπ2x,存在“稳定区间”,如x∈[0,1]时,f(x)=sinπ2x∈[0,1].④对于f(x)=lnx,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna=a,且lnb=b,即方程lnx=x有两个解,即y=lnx

和y=x的图象有两个交点,这与y=lnx和y=x的图象没有公共点相矛盾,故④不存在“稳定区间”.故选B.12.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B13.已知直线方程l1:2x-4y+7=0,l2:x-2y+5=0,则l1与l2的关系()

A.平行

B.重合

C.相交

D.以上答案都不对答案:A14.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.15.在直角坐标系中,画出下列向量:

(1)|a|=2,a的方向与x轴正方向的夹角为60°,与y轴正方向的夹角为30°;

(2)|a|=4,a的方向与x轴正方向的夹角为30°,与y轴正方向的夹角为120°;

(3)|a|=42,a的方向与x轴正方向的夹角为135°,与y轴正方向的夹角为135°.答案:由题意作出向量a如右图所示:(1)(2)(3)16.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。17.若椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是______.答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故为418.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2219.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.20.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.21.下列4个命题

㏒1/2x>㏒1/3x

其中的真命题是()

、A.(B.C.D.答案:D解析:取x=,则=1,=<1,p2正确当x∈(0,)时,()x<1,而>1.p4正确22.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()

A.10

B.12

C.16

D.20答案:D23.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(

)。答案:圆,双曲线24.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(

)。(取整数值)答案:82°25.如图,在扇形OAB中,∠AOB=60°,C为弧AB上且与A,B不重合的一个动点,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,则λ的取值范围为()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:设射线OB上存在为B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,设OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三点共线可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,则u=|OC||OC′|存在最大值,即在弧AB(不包括端点)上存在与AB'平行的切线,所以λ∈(12,2).故选C.26.是平面直角坐标系(坐标原点为O)内分别与x轴、y轴正方向相同的两个单位向量,且则△OAB的面积等于()

A.15

B.10

C.7.5

D.5答案:D27.某学校三个社团的人员分布如下表(每名同学只参加一个社团):

声乐社排球社武术社高一4530a高二151020学校要对这三个社团的活动效果里等抽样调查,按分层抽样的方法从社团成员中抽取30人,结果声乐社被抽出12人,则a=______.答案:根据分层抽样的定义和方法可得,1245+15=30120+a,解得a=30,故为3028.对于5年可成材的树木,从栽种到5年成材的木材年生长率为18%,以后木材的年生长率为10%.树木成材后,既可以出售树木,重栽新树苗;也可以让其继续生长.问:哪一种方案可获得较大的木材量?(注:只需考虑10年的情形)(参考数据:lg2=0.3010,lg1.1=0.0414)答案:由题意,第一种得到的木材为(1+18%)5×2第二种得到的木材为(1+18%)5×(1+10%)5第一种除以第二种的结果为2(1+10%)5=21.61>1所以第一种方案可获得较大的木材量.29.如图,正方体ABCD-A1B1C1D1的棱长为1.

(1)求A1C与DB所成角的大小;

(2)求二面角D-A1B-C的余弦值;

(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.30.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于(

A.

B.

C.

D.答案:A31.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.32.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()

A.分析发

B.综合法

C.综合法、分析法结合使用

D.间接证法答案:B33.直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量,则a=______.答案:∵直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量∴两条直线互相平行,可得a2=2a≠3-1,解之得a=±2故为:±234.(《几何证明选讲》选做题)如图,在Rt△ABC中,∠C=90°,⊙O分别切AC、BC于M、N,圆心O在AB上,⊙O的半径为4,OA=5,则OB的长为______.答案:连接OM,ON,则∵⊙O分别切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN为正方形∵⊙O的半径为4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故为:20335.函数f(x)为偶函数,其图象与x轴有四个交点,则该函数的所有零点之和为()A.4B.2C.1D.0答案:因为函数f(x)为偶函数,所以函数图象关于y轴对称.又其图象与x轴有四个交点,所以四个交点关于y轴对称,不妨设四个交点的横坐标为x1,x2,x3,x4,则根据对称性可知x1+x2+x3+x4=0.故选D.36.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.37.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C38.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C39.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论