版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年安徽工商职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.O、A、B、C为空间四个点,又为空间的一个基底,则()
A.O、A、B、C四点共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D2.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.3.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.4.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为______.答案:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(12,0),依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故为:172.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)•(2b)=-2,则x=______.答案:c-a=(0,0,1-x),(c-a)•(2b)
=(2,4,2)•(0,0,1-x)=2(1-x)=-2,解得x=2,故为2.6.H:x-y+z=2为坐标空间中一平面,L为平面H上的一直线.已知点P(2,1,1)为L上距离原点O最近的点,则______为L的方向向量.答案:∵x-y+z=2为坐标空间中一平面∴平面的一个法向量是n=(1,-1,1)设直线L的方向向量为d=(2,b,c)∵L在H上,∴d与平面H的法向量n=(1,-1,1)垂直故d•n=0⇒2-b+c=0∵P(2,1,1)为直线L上距离原点O最近的点,∴.OP⊥L故OP•d=0⇒(2,1,1)•(2,b,c)=0⇒4+b+c=0解得b=-1,c=-3故为:(2,-1,-3)7.半径为R的球内接一个正方体,则该正方体的体积为()A.22RB.4π3R3C.893R3D.193R3答案:∵半径为R的球内接一个正方体,设正方体棱长为a,正方体的对角线过球心,可得正方体对角线长为:a2+a2+a2=2R,可得a=2R3,∴正方体的体积为a3=(2R3)3=83R39,故选C;8.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______
答案:(1)游戏盘的中奖概率为
38,(2)游戏盘的中奖概率为
14,(3)游戏盘的中奖概率为
26=13,(4)游戏盘的中奖概率为
13,(1)游戏盘的中奖概率最大.故为:(1).9.函数y=2x的值域为______.答案:因为:x≥0,所以:y=2x≥20=1.∴函数y=2x的值域为:[1,+∞).故为:[1,+∞).10.设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(X=3)等于()
A.
B.
C.
D.答案:C11.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.12.命题“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0答案:D13.阅读下面的程序框图,该程序运行后输出的结果为______.答案:循环前,S=0,A=1,第1次判断后循环,S=1,A=2,第2次判断并循环,S=3,A=3,第3次判断并循环,S=6,A=4,第4次判断并循环,S=10,A=5,第5次判断并循环,S=15,A=6,第6次判断并退出循环,输出S=15.故为:15.14.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x15.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.16.设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为______.答案:焦点坐标(a4,0),|0F|=a4,直线的点斜式方程y=2(x-a4)在y轴的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故为:y2=8x17.执行下列程序后,输出的i的值是()
A.5
B.6
C.10
D.11答案:D18.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()
A.
B.
C.
D.答案:B19.下表是x与y之间的一组数据,则y关于x的线性回归方程
必过点()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D20.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(
)
A.3
B.2
C.-1
D.0答案:A21.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C22.已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1;
(2)求点D1到平面B1EF的距离.答案:(1)证明略(2)解析:(1)
建立如图所示的空间直角坐标系,则D(0,0,0),B(2,2,0),E(2,,0),F(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).设平面B1EF的法向量为n,且n=(x,y,z)则n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,则y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距离d===.23.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切24.命题“若A∩B=A,则A∪B=B”的逆否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.故选C.25.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.答案:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是AE=12AB=3.(10分)26.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C27.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.28.已知|a|=1,|b|=2,<a,b>=60°,则|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故为:2329.语句“若a>b,则a+c>b+c”是()
A.不是命题
B.真命题
C.假命题
D.不能判断真假答案:B30.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.
答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.31.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C32.已知数列{an}的前n项和Sn=an2+bn=c
(a、b、c∈R),则“c=0”是“{an}是等差数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件答案:数列{an}的前n项和Sn=an2+bn+c根据等差数列的前n项和的公式,可以看出当c=0时,Sn=an2+bn表示等差数列的前n项和,则数列是一个等差数列,当数列是一个等差数列时,表示前n项和时,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要条件,故选C.33.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.34.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1035.一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的体积是()A.6B.6C.32D.23答案:可设长方体同一个顶点上的三条棱长分别为a,b,c,则有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故这个长方体的体积是6故为B36.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2237.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()
A.8
B.24
C.48
D.120答案:C38.Rt△ABC的直角边AB在平面α内,顶点C在平面α外,则直角边BC、斜边AC在平面α上的射影与直角边AB组成的图形是()
A.线段或锐角三角形
B.线段与直角三角形
C.线段或钝角三角形
D.线段、锐角三角形、直角三角形或钝角三角形答案:B39.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.40.曲线的极坐标方程ρ=4sinθ化为直角坐标方程为______.答案:将原极坐标方程ρ=4sinθ,化为:ρ2=4ρsinθ,化成直角坐标方程为:x2+y2-4y=0,即x2+(y-2)2=4.故为:x2+(y-2)2=4.41.正方形ABCD的边长为1,=,=,则|+|=(
)
A.0
B.2
C.
D.2答案:C42.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)43.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()
A.
B.
C.
D.(1,2)答案:B44.设直线l过点P(-3,3),且倾斜角为56π
(1)写出直线l的参数方程;
(2)设此直线与曲线C:x=2cosθy=4sinθ(θ为参数)交A、B两点,求|PA|•|PB|答案:(1)由于过点(a,b)倾斜角为α的直线的参数方程为
x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点P(-3,3),倾斜角α=5π6,故直线的参数方程是x=-3-32ty=3+12t(t是参数).…(5分)(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t1,则点A,B的坐标分别为A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直线L的参数方程代入椭圆的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因为t1和t2是方程①的解,从而t1t2=11613,由t的几何意义可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|•|PB|=11613.45.已知x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,则a+b=______.答案:∵x=-3-2i(i为虚数单位)是一元二次方程x2+ax+b=0(a,b均为实数)的一个根,∴(-3-2i)2+a(-3-2i)+b=0,化为5-3a+b+(12-2a)i=0.根据复数相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故为19.46.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.47.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C48.设d1与d2都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于d1与d2的叙述正确的是()A.d1=d2B.d1与d2同向C.d1∥d2D.d1与d2有相同的位置向量答案:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.49.(理)
设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)50.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D第2卷一.综合题(共50题)1.极坐标方程pcosθ=表示()
A.一条平行于x轴的直线
B.一条垂直于x轴的直线
C.一个圆
D.一条抛物线答案:B2.与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是______.答案:设M(x,y)为所求轨迹上任一点,则由题意知1+|y|=x2+y2,化简得x2=2|y|+1.因此与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是x2=2|y|+1.故为x2=2|y|+1.3.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.34134.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()
A.9
B.1
C.-1
D.-9答案:C5.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.6.若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直线l2的倾斜角为钝角,∴k2<0.直线l1,l3的倾斜角为锐角,且直线l1的倾斜角小于l3的倾斜角,∴0<k1<k3.故选A.7.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).8.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.9.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?
(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.10.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191011.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()
A.
B.2
C.
D.答案:C12.两平行直线x+3y-4=0与2x+6y-9=0的距离是
______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:102013.已知直线l的方程为x=2-4
ty=1+3
t,则直线l的斜率为______.答案:直线x=2-4
ty=1+3
t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.14.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.
…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
…(12分)15.若向量a=(3,0),b=(2,2),则a与b夹角的大小是()
A.0
B.
C.
D.答案:B16.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D17.在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.
其中正确命题的个数为()个.
A.0
B.1
C.2
D.3答案:B18.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)19.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()
A.12种
B.48种
C.90种
D.96种答案:B20.为求方程x5-1=0的虚根,可以把原方程变形为(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为______.答案:由题可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一个虚根为-1-5±10-25i4,-1+5±10+25i4中的一个故为:-1-5+10-25i4.21.4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同报法的种数是()
A.34
B.43
C.24
D.12答案:A22.(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=______.答案:如图所示:作出直径AE,∵OA=2,C为OA的中点,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故为355.23.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.24.某市某年一个月中30天对空气质量指数的监测数据如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.
分组频数频率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下图所示.
…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)101030[91,101)3330………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a,b,c,质量指数在区间[101,111)内的有2天,记这两天分别为d,e,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)25.圆ρ=2sinθ的圆心到直线2ρcosθ+ρsinθ+1=0的距离是______.答案:由ρ=2sinθ,化为直角坐标方程为x2+y2-2y=0,其圆心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化为直角坐标方程为2x+y+1=0,由点到直线的距离公式,得+d=|1+1|5=255.故为255.26.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C27.设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈
(32
,
3)),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,2),求轨迹C1与C2的方程;
(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于233,求实数x0的取值范围.答案:(1)方法1:①当n为奇数时,|z+3|-|z-3|=2a,常数a∈
(32
,
3),轨迹C1为双曲线,其方程为x2a2-y29-a2=1;…(3分)②当n为偶数时,|z+3|+|z-3|=4a,常数a∈
(32
,
3),轨迹C2为椭圆,其方程为x24a2+y24a2-9=1;…(6分)依题意得方程组44a2+24a2-9=14a2-29-a2=1⇒4a4-45a2+99=0a4-15a2+36=0
,解得a2=3,因为32<a<3,所以a=3,此时轨迹为C1与C2的方程分别是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依题意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a⇒|z+3|=3a|z-3|=a…(3分)轨迹为C1与C2都经过点D(2,2),且点D(2,2)对应的复数z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23对应的轨迹C1是双曲线,方程为x23-y26=1(x>0);|z+3|+|z-3|=43对应的轨迹C2是椭圆,方程为x212+y23=1.…(9分)(2)由(1)知,轨迹C2:x212+y23=1,设点A的坐标为(x,y),则|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)当0<43x0≤23即0<x0≤332时,|AB|2min=3-13x20≥43⇒0<x0≤5当43x0>23即x0>332时,|AB|min=|x0-23|≥233⇒x0≥833,…(16分)综上,0<x0≤5或x0≥833.…(18分)28.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于()A.150B.200C.120D.100答案:∵每个零件被抽取的概率都相等,∴30N=0.25,∴N=120.故选C.29.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B30.方程(x2-9)2(x2-y2)2=0表示的图形是()
A.4个点
B.2个点
C.1个点
D.四条直线答案:D31.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].32.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()
A.
B.
C.
D.答案:D33.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:2034.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A35.参数方程(θ为参数)化为普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D36.点P(1,2,2)到原点的距离是()
A.9
B.3
C.1
D.5答案:B37.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C38.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.39.化简下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故为:(1)0;(2)AC40.不等式的解集是
.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.41.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B42.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.43.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:C44.如图,AC、BC分别是直角三角形ABC的两条直角边,且AC=3,BC=4,以AC为直径作圆与斜边AB交于D,则BD=______.答案:连CD,在Rt△ABC中,因为AC、BC的长分别为3cm、4cm,所以AB=5cm,∵AC为直径,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故为:16545.已知a=20.5,,,则a,b,c的大小关系是()
A.a>c>b
B.a>b>c
C.c>b>a
D.c>a>b答案:B46.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.47.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos234048.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2012次操作后得到的数是
()A.25B.250C.55D.133答案:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133∴操作结果,以3为周期,循环出现∵2012=3×670+2∴第2012次操作后得到的数与第2次操作后得到的数相同∴第2012次操作后得到的数是55故选C.49.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有______种(用数字作答).答案:根据题意,将10个名额,分配给7所学校,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,共有C96=84种不同方法.所以名额分配的方法共有84种.50.已知函数f(x)=x2+2,x≥13x,x<1,则f(f(0))=()A.4B.3C.9D.11答案:因为f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故选B.第3卷一.综合题(共50题)1.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由题意可得,对于函数,当x=100时,y=95.76%=0.9576,结合选项检验选项A:x=100,y=0.0424,故排除A选项B:x=100,y=0.9576,故B正确故选:B解析:已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x年后的剩留量为y,则y=f(x)的函数解析式为(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x2.如图,AB是半圆O的直径,C是AB延长线上一点,CD切半圆于D,CD=4,AB=3BC,则AC的长是______.答案:∵CD是圆O的切线,∴由切割线定理得:CD2=CB×CA,∵AB=3BC,设BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴则AC的长是8.故填:8.3.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°4.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;505.设a1,a2,…,a2n+1均为整数,性质P为:对a1,a2,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.答案:证明:①当a1,a2,…,a2n+1全部相等时,从中任意2n个数,将其分为两组,每组n个数,两组所有元素的和相等,故性质P成立.②下面证明:当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.反证法:假设a1,a2,…,a2n+1不全部相等,则其中至少有一个整数和其它的整数不同,不妨设此数为a1,若a1在取出的2n个数中,将其分为两组,每组n个数,则a1在的那个组所有元素的和与另一个组所有元素的和不相等,这与性质P矛盾,故假设不成立,所以,当a1,a2,…,a2n+1具有性质P时,a1,a2,…,a2n+1全部相等.综上,a1,a2,…,a2n+1全部相等当且仅当a1,a2,…,a2n+1具有性质P.6.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2
012”时,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要条件.故选A.7.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()
A.
B.-
C.2
D.-2答案:B8.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)9.过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.答案:设所求直线与已知直线l1,l2分别交于A、B两点.∵点B在直线l2:2x+y-8=0上,故可设B(t,8-2t).又M(0,1)是AB的中点,由中点坐标公式得A(-t,2t-6).∵A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直线方程为:x+4y-4=0.10.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.11.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
据以上数据估计两人的技术稳定性,结论是()
A.甲优于乙
B.乙优于甲
C.两人没区别
D.无法判断答案:A12.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过
B作BD⊥AC于D,BD交⊙O于E点,若AE平分
∠BAD,则∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D13.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°14.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B15.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.16.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.答案:(1)点E的坐标是(1,1,1)(2)F是AD的中点时满足EF⊥平面PCB解析:(1)如图所示,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0)、B(2,2,0)、C(0,2,0),设P(0,0,2m),则E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴点E的坐标是(1,1,1).(2)∵F∈平面PAD,∴可设F(x,0,z).则=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F点的坐标为(1,0,0)即点F是AD的中点时满足EF⊥平面PCB.17.已知:在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC的延长线交于点F,若CF=4,BC=5,则DF=______.答案:连接FA,如下图所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故为:618.参数方程(θ为参数)化为普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D19.参数方程(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C20.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C21.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22322.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()
A.
B.
C.
D.2答案:C23.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是______.答案:|z|=5,即点Z到原点O的距离为5∴z所对应点的轨迹为以(0,0)为圆心,5为半径的圆.24.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.25.抛物线y2=4x的焦点坐标为()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B26.用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:证明:(1)当n=1时,左边=12=1,右边=1×2×36=1,等式成立.(4分)(2)假设当n=k时,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,当n=k+1时,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6这就是说,当n=k+1时等式也成立.(10分)根据(1)和(2),可知等式对任何n∈N*都成立.(12分)27.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.28.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+429.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B的中点,则点E的坐标为()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A30.设椭圆=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()
A.ab
B.ab
C.ab
D.2ab答案:B31.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于班风学风的精彩发言稿(5篇)
- 污水处理与可持续发展-洞察分析
- 新型密封材料耐磨性分析-洞察分析
- 网络均衡与数据安全-洞察分析
- 虚拟现实技术在火灾风险培训中的作用-洞察分析
- 虚拟现实的报告-洞察分析
- 水利工程风险监测技术-洞察分析
- 虚拟现实技术与心理实验的结合-洞察分析
- 用户画像在人工智能领域的应用与挑战研究-洞察分析
- 下颌下腺癌化疗药物分子标记物-洞察分析
- 2019-2020学年上海虹口区实验中学六年级上学期英语期末卷及答案
- 供应链总监工作计划
- 团体辅导准备篇:结构式团体练习及其应用
- 大华硬盘录像机操作说明
- 社会保险职工增减表
- 结婚函调报告表(带参考)
- 2023-2024学年江苏省泰州市姜堰市数学六年级第一学期期末质量检测试题含答案
- 表-柴油的理化性质及危险特性
- 妇产科名词解释及简答题
- 了不起的狐狸爸爸精编版课件
- 品质部年终总结报告
评论
0/150
提交评论