版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年大理护理职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.若O(0,0),A(1,2)且OA′=2OA.则A′点坐标为()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:设A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故选C.2.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()
A.6块
B.7块
C.8块
D.9块答案:B3.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(
)
A.
B.
C.
D.答案:D4.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A5.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.6.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.7.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()
A.1
B.2
C.3
D.4答案:B8.
在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()
A.
B.
C.
D.答案:D9.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.10.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.11.在极坐标系中,点A(2,π2)关于直线l:ρcosθ=1的对称点的一个极坐标为______.答案:在直角坐标系中,A(0,2),直线l:x=1,A关于直线l的对称点B(2,2).由于|OB|=22,OB直线的倾斜角等于π4,且点B在第一象限,故B的极坐标为(22,π4),故为
(22,π4).12.凡自然数都是整数,而
4是自然数
所以4是整数.以上三段论推理()
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.两个“整数”概念不一致答案:A13.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故选A14.5颗骰子同时掷出,共掷100次则至少一次出现全为6点的概率为(
)A.B.C.D.答案:C解析:5颗骰子同时掷出,没有全部出现6点的概率是,共掷100次至少一次出现全为6点的概率是.15.若向量a,b的夹角为120°,且|a|=1,|b|=2,c=a+b,则有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由题意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故选A.16.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略17.图为一个几何体的三视国科,尺寸如图所示,则该几何体的体积为()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由图中数据,下部的正三棱柱的高是3,底面是一个正三角形,其边长为2,高为3,故其体积为3×12×2×3=33上部的球体直径为1,故其半径为12,其体积为4π3×(12)3=π6故组合体的体积是33+π6故选C18.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2219.要证明,可选择的方法有以下几种,其中最合理的是()
A.综合法
B.分析法
C.反证法
D.归纳法答案:B20.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()
A.是圆心
B.在圆上
C.在圆内
D.在圆外答案:C21.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.22.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A.1条B.2条C.3条D.4条答案:分别以A、B为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.故选B.23.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).24.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.25.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).26.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1227.平面α外一点P到平面α内的四边形的四条边的距离都相等,且P在α内的射影在四边形内部,则四边形是()
A.梯形
B.圆外切四边形
C.圆内接四边
D.任意四边形答案:B28.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有一个黒球与都是红球
B.至少有一个黒球与都是黒球
C.至少有一个黒球与至少有1个红球
D.恰有1个黒球与恰有2个黒球答案:D29.平面向量的夹角为,则等于(
)
A.
B.3
C.7
D.79答案:A30.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>331.抛物线的顶点在原点,焦点与椭圆=1的一个焦点重合,则抛物线方程是()
A.x2=±8y
B.y2=±8x
C.x2=±4y
D.y2=±4x答案:A32.已知均为单位向量,且=,则,的夹角为()
A.
B.
C.
D.答案:C33.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.34.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.35.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C36.两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为(
)
A.
B.
C.7
D.答案:D37.若(1+2)5=a+b2(a,b为有理数),则a+b=()A.45B.55C.70D.80答案:解析:由二项式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故选C38.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故为:A≤B≤C.39.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.40.命题“若A∩B=A,则A∪B=B”的逆否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.故选C.41.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11442.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.43.=(2,1),=(3,4),则向量在向量方向上的投影为()
A.
B.
C.2
D.10答案:C44.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10545.直线x=1和函数y=f(x)的图象的公共点的个数为______.答案:由函数定义知当函数在x=1处有定义时,直线x=1和函数y=f(x)的图象的公共点的个数为1,若函数在x=1处有无定义时,直线x=1和函数y=f(x)的图象的公共点的个数为0故线x=1和函数y=f(x)的图象的公共点的个数为0或1故为0或146.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A47.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.
问:(1)这种猜想,你认为正确吗?
(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?
(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立48.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B49.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC
的比为ABBC=|AB||BC|=12,故为12.50.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且
y=0.95x+
a,则
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.第2卷一.综合题(共50题)1.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.2.有一农场种植一种水稻在同一块稻田中连续8年的年平均产量如下:(单位:kg)
450
430
460
440
450
440
470
460;
则其方差为()
A.120
B.80
C.15
D.150答案:D3.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.4.如图,在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若AP=λa+μb,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比S平行四边形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,∵得AP=27AB+47AC,∴S平行四边形ANPMS平行四边形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;5.点(1,-1)在圆(x-a)2+(y-a)2=4的内部,则a取值范围是()
A.-1<a<1
B.0<a<1
C.a<-1或a>1
D.a≠±1答案:A6.设a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,则实数m,n的值分别为______.答案:因为a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根据空间向量平行的坐标表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故为:m=12,n=6.7.两平行直线x+3y-5=0与x+3y-10=0的距离是______.答案:根据题意,得两平行直线x+3y-5=0与x+3y-10=0的距离为d=|-5+10|12+32=102故为:1028.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D9.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A10.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4211.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故选A.12.附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设AD=λAB,异面直线AC1与CD所成角的余弦值为925,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分别为x,y,z轴建立如图所示空间直角坐标,因为AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因为AD=λAB,所以点D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因为异面直线AC1与CD所成角的余弦值为925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因为
D是AB的中点,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),设平面DB1C的一个法向量n2=(x0,y0,z0),则n1,n2的夹角(或其补角)的大小就是二面角D-CB1-B的大小,由n2•CD=0n2•CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,则y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1•n2|n1|•|n2|=434=23417.所以二面角D-B1C-B的余弦值为23417.
…(10分)13.函数y=ax+b和y=bax(a≠0,b>0,且b≠1)的图象只可能是()A.
B.
C.
D.
答案:对于A:函数y=ax+b递增可得a>0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0故A正确对于B:函数y=ax+b递增可得a>0,b>1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故B不正确对于C:函数y=ax+b递减可得a<0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故C不正确对于D:函数y=ax+b递减可得a<0,b>1;函数y=bax(a≠0,b>0,且b≠1)递增可得b>1且a>0,矛盾,故D不正确故选A14.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()
A.1
B.2
C.3
D.0答案:B15.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D16.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()
A.
B.3
C.2
D.2答案:A17.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()
A.
B.
C.
D.答案:D18.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.19.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)20.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.21.某学校三个社团的人员分布如下表(每名同学只参加一个社团):
声乐社排球社武术社高一4530a高二151020学校要对这三个社团的活动效果里等抽样调查,按分层抽样的方法从社团成员中抽取30人,结果声乐社被抽出12人,则a=______.答案:根据分层抽样的定义和方法可得,1245+15=30120+a,解得a=30,故为3022.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNMB.mMNC.MNmD.N答案:由题意知,总体中带有标记的鱼所占比例是NM,故样本中带有标记的个数估计为mNM,故选A.23.已知函数f(x)=2x,x≤1log13x,x>1,若f(a)=2,则a=______.答案:当a≤1时y=2x∴2a=2∴a=1当a>1时y=log13x∴2=loga13∴a=19不成立所以a=1故为:124.执行如图所示的程序框图,输出的S值为()
A.2
B.4
C.8
D.16
答案:C25.若向量=(1,λ,2),=(2,-1,2)且与的夹角余弦为,则λ等于(
)
A.2
B.-2
C.-2或
D.2或答案:C26.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.27.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1428.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.29.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:16530.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()
A.2+
B.
C.
D.1+答案:A31.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______.答案:由题意,X的取值为0,1,2,则P(X=0)=1315×1214×1113=2235;P(X=1)=215×1314×1213+1315×214×1213+1315×1214×213=1235P(X=2)=1315×214×113+215×1314×113+215×114×1313=135所以期望E(X)=0×2235+1×1235+2×135=1435,所以E(5X+1)=1435×5+1=3故为3.32.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D33.如图,△ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若∠ABC=60°,PD=1,BD=8,则∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割线定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,334.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.35.在平面几何中,四边形的分类关系可用以下框图描述:
则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.36.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:837.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线右支C.一条射线D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根据双曲线的定义,∴点P是以M(-2,0),N(2,0)为两焦点的双曲线的右支.故选B.38.如图,曲线C1、C2、C3分别是函数y=ax、y=bx、y=cx的图象,则()
A.a<b<c
B.a<c<B
C.c<b<a
D.b<c<a
答案:C39.有一批数量很大的产品,其中次品率是20%,对这批产品进行抽查,每次抽出一件,如果抽出次品则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过9次,那么抽查次数为9次的概率为(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C40.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C41.一动圆与两圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线答案:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2-8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.42.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是______.答案:|z|=5,即点Z到原点O的距离为5∴z所对应点的轨迹为以(0,0)为圆心,5为半径的圆.43.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C44.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(
)
A.
B.
C.
D.答案:D45.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.46.离心率e=23,短轴长为85的椭圆标准方程为______.答案:离心率e=23,短轴长为85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以椭圆标准方程为x2144+y280=1或y2144+x280=1故为x2144+y280=1或y2144+x280=147.有以下四个结论:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,则x=e2;
④ln(lg1)=0.
其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A48.函数y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因为函数y=5x,x∈N+的定义域为正整数集N+,所以当自变量x取1,2,3,4,…时,其相应的函数值y依次是5,52,53,54,….因此,函数y=5x,x∈N+的值域是{5,52,53,54,…}.故选D.49.设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件答案:A50.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.第3卷一.综合题(共50题)1.下面的结论正确的是()A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则答案:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A不正确;一个算法必须在有限步内完成,不然就不是问题的解了,故B不正确;一般情况下,完成一件事情的算法不止一个,但是存在一个比较好的,故C不正确;设计算法要尽量运算简单,节约时间,故D正确,故选D.2.在空间直角坐标系O-xyz中,点P(4,3,7)关于坐标平面yOz的对称点的坐标为______.答案:设所求对称点为P'(x,y,z)∵关于坐标平面yOz的对称的两个点,它们的纵坐标、竖坐标相等,而横坐标互为相反数,∴x=-4,y=3,z=7即P关于坐标平面yOz的对称点的坐标为P'(-4,3,7)故为:(-4,3,7)3.圆ρ=2sinθ的圆心到直线2ρcosθ+ρsinθ+1=0的距离是______.答案:由ρ=2sinθ,化为直角坐标方程为x2+y2-2y=0,其圆心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化为直角坐标方程为2x+y+1=0,由点到直线的距离公式,得+d=|1+1|5=255.故为255.4.某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数是______;众数是______.
答案:将比赛中的得分按照从小到大的顺序排,中间两个数为23,23,所以这组数据的中位数是23,所有的数据中出现次数最多的数是23故为23;235.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()
A.±
B.±2
C.±2
D.±4答案:B6.若已知中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,则该椭圆的方程为______.答案:设椭圆的方程是x2a2+y2b2=1,由题设,中心在坐标原点的椭圆过点(1,233),且它的一条准线方程为x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式联立可以解得a=3,b=2,c=1或a=7,b=143,c=73故该椭圆的方程为x23+y22=1或x27+y2149=1故应填x23+y22=1或x27+y2149=17.若P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,则该弦所在直线的普通方程为______.答案:∵曲线x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,设过点P(2,-1)的弦与(x-1)2+y2=25交于A(x1,y1),B(x2,y2),则x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴该弦所在直线的普通方程为y+1=x-2,即x-y-3=0.故为:x-y-3=0.8.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.9.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(3,0),(0,2),则此椭圆的方程是______.答案:依题意,此椭圆方程为标准方程,且焦点在x轴上,设为x2a2+y2b2=1∵椭圆的两顶点分别是(3,0),(0,2),∴a=3,b=2∵∴此椭圆的标准方程为:x29+y22=1.故为:x29+y22=1.10.如果消息M发生的概率为P(M),那么消息M所含的信息量为I(M)=log2[P(M)+],若小明在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消费中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C11.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C12.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()
A.等边三角形
B.等腰三角形
C.不等边三角形
D.直角三角形答案:B13.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,FA与x轴正方向的夹角为60°,求|OA|的值.答案:由题意设A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(负值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p14.如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.
A.40
B.50
C.70
D.80
答案:C15.若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=______.答案:抛物线方程整理得x2=1ay,焦点(0,14a)l被抛物线截得的线段长即为通径长1a,故1a=4,a=14;故为14.16.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.17.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.18.与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是______.答案:设M(x,y)为所求轨迹上任一点,则由题意知1+|y|=x2+y2,化简得x2=2|y|+1.因此与x轴相切并和圆x2+y2=1外切的圆的圆心的轨迹方程是x2=2|y|+1.故为x2=2|y|+1.19.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},则方程x2m+y2n=1表示的是双曲线的概率为______.答案:由题意,方程x2m+y2n=1表示双曲线时,mn<0,m>0,n<0时,有2×2=4种,m<0,n>0时,有2×3=6种∵m,n的取值共有4×5=20种∴方程x2m+y2n=1表示的是双曲线的概率为4+620=12故为:1220.凡自然数都是整数,而
4是自然数
所以4是整数.以上三段论推理()
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.两个“整数”概念不一致答案:A21.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.22.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()
A.圆
B.椭圆
C.双曲线的一支
D.抛物线答案:A23.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C24.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.
(1)证明点Q的轨迹是双曲线,并求出轨迹方程.
(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)25.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()
A.外切
B.内切
C.外离
D.内含答案:A26.设x1、x2、y1、y2是实数,且满足x12+x22≤1,
证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分27.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.28.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
(1)他罚球1次的得分X的数学期望;
(2)他罚球2次的得分Y的数学期望;
(3)他罚球3次的得分η的数学期望.答案:(1)X的取值为1,2,则因为P(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值为0,1,2,则P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列为Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值为0,1,2,3,则P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布为η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.29.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.30.下列说法不正确的是()A.圆柱侧面展开图是一个矩形B.圆锥的过轴的截面是等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面答案:圆柱的侧面展开图是一个矩形,A正确,因为母线长相等,得到圆锥的轴截面是一个等腰三角形,B正确,圆台平行于底面的截面是圆面,D正确,故选C.31.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.32.对某种花卉的开放花期追踪调查,调查情况如表:
花期(天)11~1314~1617~1920~22个数20403010则这种卉的平均花期为______天.答案:由表格知,花期平均为12天的有20个,花期平均为15天的有40个,花期平均为18天的有30个,花期平均为21天的有10个,∴这种花卉的评价花期是12×20+15×40+18×30+21×10100=16,故为:1633.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.34.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.35.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.
80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.36.以下程序输入2,3,4运行后,输出的结果是()
INPUT
a,b,c
a=b
b=c
c=a
PRI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除房屋租赁合同集锦15篇
- 公司员工个人工作总结集合15篇
- 中学校长工作述职报告合集6篇
- 部编版四年级语文下册全册教案
- 电子巡查系统课程设计
- 小额贷款有限公司日常管理制度
- 汽车文化5 汽车史上的重大技术革新
- 湖南省郴州市2024-2025学年七年级上学期期末考试英语试卷(无答案)
- 职场篇-课件 项目八商品销售沟通
- 2025年特种铜合金材料项目发展计划
- 成都市金牛区八年级上学期期末考试语文试题
- 部编版九年级语文上册教科书(课本全册)课后习题参考答案
- 【建模教程】-迈达斯桥梁建模
- 蟹塘承包合同
- 水性建筑涂料企业风险点告知卡
- 涉诈风险账户审查表
- 水利二级建造师继续教育试题及答案(江西)
- 2023上海四年级第一学期期末考试数学试卷
- 天津市中小学生思想品德发展水平评价指标(小学中高年级学段)
- 苏教版数学四年级下册知识点总结
- 三年级班队会课程纲要
评论
0/150
提交评论