版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年南京机电职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或122.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.3.北京期货商会组织结构设置如下:
(1)会员代表大会下设监事会、会长办公会,而会员代表大会于会长办公会共辖理事会;
(2)会长办公会设会长,会长管理秘书长;
(3)秘书长具体分管:秘书处、规范自律委员会、服务推广委员会、发展创新委员会.
根据以上信息绘制组织结构图.答案:绘制组织结构图:4.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.5.若=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D6.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切线,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.7.抛掷3颗质地均匀的骰子,求点数和为8的概率______.答案:由题意总的基本事件数为6×6×6=216种点数和为8的事件包含了向上的点的情况有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四种情况向上点数分别为(1,1,6)的事件包含的基本事件数有3向上点数分别为(1,2,5)的事件包含的基本事件数有6向上点数分别为(2,2,4)的事件包含的基本事件数有3向上点数分别为(2,3,3)的事件包含的基本事件数有3所以点数和为8的事件包含基本事件数是3+6+3+3=15种点数和为8的事件的概率是15216=572故为:572.8.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()
A.3
B.4
C.5
D.6答案:C9.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B10.设集合A={1,2},={2,3},C={2,3,4},则(A∩B)∪C=______.答案:由题得:A∩B={2},又因为C={2,3,4},(故A∩B)∪C={2,3,4}.故为
{2,3,4}.11.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D12.圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.答案:以有点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圆O1,圆O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.…(10分)13.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.
i=1S=1n=0DO
S<=500
S=S+i
i=i+1
n=n+1WENDPRINT
n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;
②PRINT
n+1
应改为PRINT
n;
③S=1应改为S=0.14.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.15.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意自然数均有xn+1=f(xn),则x2004的值为()
A.1B.2C.4D.5答案:由于函数f(x)定义如下表:故数列{xn}满足:5,2,1,4,5,2,1,…是一个周期性变化的数列,周期为:4.∴x2004=x0=5.故选D.16.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()
A.4
B.15
C.7
D.3答案:D17.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=118.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为______.答案:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为3π4的圆弧.其与x轴围成的图形的面积为12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故为:2+4π.19.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且则C的坐标为()
A.
B.
C.
D.答案:C20.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于
______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.21.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.22.已知A(4,1,9),B(10,-1,6),则A,B两点间距离为______.答案:∵A(4,1,9),B(10,-1,6),∴A,B两点间距离为|AB|=(10-4)2+(-1-1)2+(6-9)2=7故为:723.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.24.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化简得4ab=1.故为4ab=1.25.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.26.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()
A.3
B.-2
C.2
D.不存在答案:B27.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.28.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.29.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.30.设O为坐标原点,F为抛物线的焦点,A是抛物线上一点,若·=,则点A的坐标是
(
)A.B.C.D.答案:B解析:略31.直线l经过点A(2,-1)和点B(-1,5),其斜率为()
A.-2
B.2
C.-3
D.3答案:A32.如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)
(1)求证:AE∥平面DCF;
(2)若M是AE的中点,AB=3,∠CEF=90°,求证:平面AEF⊥平面BMC.答案:(1)证法1:过点E作EG⊥CF交CF于G,连结DG,可得四边形BCGE为矩形,又四边形ABCD为矩形,所以AD=EG,从而四边形ADGE为平行四边形故AE∥DG
因为AE?平面DCF,DG?平面DCF,所以AE∥平面DCF
证法2:(面面平行的性质法)因为四边形BEFC为梯形,所以BE∥CF.又因为BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因为四边形ABCD为矩形,所以AB∥DC.同理可证AB∥平面DCF.又因为BE和AB是平面ABE内的两相交直线,所以平面ABE∥平面DCF.又因为AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中点,∴BM⊥AE,由侧视图是矩形,俯视图是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.33.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2234.直线l1过点P(0,-1),且倾斜角为α=30°.
(I)求直线l1的参数方程;
(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)
(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)35.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是()
A.椭圆
B.AB所在直线
C.线段AB
D.无轨迹答案:C36.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A37.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.38.极点到直线ρ(cosθ+sinθ)=3的距离是
______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.39.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()
A.30°
B.45°
C.60°
D.90°答案:C40.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.41.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3542.如果执行程序框图,那么输出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故选C43.如图,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为
______度.答案:∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等边三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故为:30.44.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3445.有五条线段长度分别为1、3、5、7、9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为()A.110B.310C.12D.710答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从五条线段中取三条共有C53种结果,而满足条件的事件是3、5、7;3、7、9;5、7、9,三种结果,∴由古典概型公式得到P=3C35=310,故选B.46.若直线l与直线2x+5y-1=0垂直,则直线l的方向向量为______.答案:直线l与直线2x+5y-1=0垂直,所以直线l:5x-2y+k=0,所以直线l的方向向量为:(2,5).故为:(2,5)47.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.48.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=149.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(
)
A.2
B.1
C.0
D.-1答案:D50.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C第2卷一.综合题(共50题)1.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()
A.4
B.15
C.7
D.3答案:D2.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c223.下列几种说法正确的个数是()
①相等的角在直观图中对应的角仍然相等;
②相等的线段在直观图中对应的线段仍然相等;
③平行的线段在直观图中对应的线段仍然平行;
④线段的中点在直观图中仍然是线段的中点.
A.1
B.2
C.3
D.4答案:B4.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()
A.P(n)对所有自然数n都成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n都成立
D.P(n)对所有大于1的自然数n成立答案:B5.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()
A.椭圆
B.双曲线
C.抛物线
D.圆答案:A6.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.7.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四8.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B9.方程4x-3×2x+2=0的根的个数是(
)
A.0
B.1
C.2
D.3答案:C10.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.11.若将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,则它的小前提是______.答案:将推理“四边形的内角和为360°,所以平行四边形的内角和为360°”改为三段论的形式,因为四边形的内角和为360°,平行四边形是四边形,所以平行四边形的内角和为360°大前提:四边形的内角和为360°;小前提:平行四边形是四边形;结论:平行四边形的内角和为360°.故为:平行四边形是四边形.12.若90°<θ<180°,曲线x2+y2sinθ=1表示()
A.焦点在x轴上的双曲线
B.焦点在y轴上的双曲线
C.焦点在x轴上的椭圆
D.焦点在y轴上的椭圆答案:D13.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(
)
A.
B.
C.
D.,0∈M答案:A14.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于
A.2
B.
C.4
D.答案:A15.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。
答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。16.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,
=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.17.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)18.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,
.则⊙O的半径为(
).
A.6
B.13
C.
D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.19.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()
A.(2,0)
B.
C.(2,π)
D.答案:D20.已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则AB与CA的夹角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14•14=-714=-12,∴θ=<AB,CA>=120°.故为120°21.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)22.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:23.把10个相同的小正方体,按如图所示的位置堆放,它的外表含有若干小正方形。如果将图中标有A的一个小正方体搬去,这时外表含有的小正方形个数与搬去前相比(
)答案:A24.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______
种(以数字作答)答案:由题意,先排男生,再插入女生,可得两名女生不相邻的排法共有A44?A25=480种故为:48025.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.26.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C27.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.28.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B的中点,则点E的坐标为()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A29.抛物线x2+y=0的焦点位于()
A.y轴的负半轴上
B.y轴的正半轴上
C.x轴的负半轴上
D.x轴的正半轴上答案:A30.设向量=(0,2),=,则,的夹角等于(
)
A.
B.
C.
D.答案:A31.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D32.曲线与坐标轴的交点是(
)A.B.C.D.答案:B解析:当时,,而,即,得与轴的交点为;当时,,而,即,得与轴的交点为33.已知2,4,2x,4y四个数的平均数是5而5,7,4x,6y四个数的平均数是9,则xy的值是______.答案:因为2,4,2x,4y四个数的平均数是5,则2+4+2x+4y=4×5,又由5,7,4x,6y四个数的平均数是9,则5+7+4x+6y=4×9,x与y满足的关系式为x+2y=72x+3y=12解得x=3y=2故为6.34.(坐标系与参数方程选做题)
直线x=-2+ty=1-t(t为参数)被圆x=3+5cosθy=-1+5sinθ(θ为参数,θ∈[0,2π))所截得的弦长为______.答案:直线和圆的参数方程化为普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦长l=225-92=82.故为:8235.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(
)
A.
B.
C.
D.
答案:B36.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C37.
如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2
,则λ等()
A.
B.1
C.
D.2
答案:D38.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°39.已知△ABC中,过重心G的直线交边AB于P,交边AC于Q,设AP=pPB,AQ=qQC,则pqp+q=()A.1B.3C.13D.2答案:取特殊直线PQ使其过重心G且平行于边BC∵点G为重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故选项为A40.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故为32.41.若f(x)=exx≤0lnxx>0,则f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故为:12.42.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D43.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D44.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.
80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.45.(不等式选讲选做题)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,当且仅当x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314时取等号.即x2+y2+z2的最小值为114.解法二:设向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,当且仅当a与b共线时取等号,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314时取等号.故为114.46.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.47.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.48.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.49.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.50.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.第3卷一.综合题(共50题)1.把两条直线的位置关系填入结构图中的M、N、E、F中,顺序较为恰当的是()
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C2.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.3.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D4.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣15.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()
A.3
B.
C.
D.4答案:B6.某市某年一个月中30天对空气质量指数的监测数据如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中a的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间[101,111)内的概率.
分组频数频率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下图所示.
…(4分)(Ⅱ)如下图所示.…(6分)由己知,空气质量指数在区间[71,81)的频率为630,所以a=0.02.…(8分)分组频数频率………[81,91)101030[91,101)3330………(Ⅲ)设A表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间[101,111)内”,由己知,质量指数在区间[91,101)内的有3天,记这三天分别为a,b,c,质量指数在区间[101,111)内的有2天,记这两天分别为d,e,则选取的所有可能结果为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为10.…(10分)事件“至少有一天空气质量指数在区间[101,111)内”的可能结果为:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件数为7,…(12分)所以P(A)=710.…(13分)7.命题“所以奇数的立方是奇数”的否定是()
A.所有奇数的立方不是奇数
B.不存在一个奇数,它的立方不是奇数
C.存在一个奇数,它的立方不是奇数
D.不存在一个奇数,它的立方是奇数答案:C8.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+49.圆x2+y2-4x=0在点P(1,)处的切线方程为()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D10.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()
A.5-
B.5+
C
D.10答案:B11.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.12.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)13.(理)下列以t为参数的参数方程中表示焦点在y轴上的椭圆的是()
A.
B.(a>b>0)
C.
D.
答案:C14.函数f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,当x∈[-2,2]时,求f(x)的最值,并说明当f(x)取最值时的x的值;
(3)若f(x)≥a恒成立,求a的取值范围.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴-a2=1即a=-2(2)a=-2时,函数f(x)=x2-2x+3在区间[-2,1]上递减,在区间[1,2]上递增,∴当x=-2时,fmax(x)=f(-2)=11当x=1时,fmin(x)=f(1)=2(3)∵x∈R时,有x2+ax+3-a≥0恒成立,须△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).16.若向量{}是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.
B.
C.
D.答案:C17.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A18.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ19.若直线y=x+b与圆x2+y2=2相切,则b的值为(
)
A.±4
B.±2
C.±
D.±2
答案:B20.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C21.已知|x|<ch,|y|>c>0.求证:|xy|<h.答案:证明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.22.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.23.点M(2,-3,1)关于坐标原点对称的点是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A24.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31625.写出下列命题非的形式:
(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;
(2)q:若x=3或x=4,则方程x2-7x+12=0.答案:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.26.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.27.如图,AB,AC分别是⊙O的切线和割线,且∠C=45°,∠BDA=60°,CD=6,则切线AB的长是______.答案:过点A作AM⊥BD与点M.∵AB为圆O的切线∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°设AB=x,则AM=22x,在直角△AMD中,AD=63x由切割线定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.28.为了了解某地母亲身高x与女儿身高y的相关关系,随机测得10对母女的身高如下表所示:
母亲身高x(cm)159160160163159154159158159157女儿身高y(cm)158159160161161155162157162156计算x与y的相关系数r=0.71,通过查表得r的临界值r0.05=______,从而有______的把握认为x与y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y=35.2+0.78x,当母亲身高每增加1cm时,女儿身高______,当母亲的身高为161cm时,估计女儿的身高为______cm.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=35.2+0.78x,因此,当母亲身高每增加1cm时,女儿身高0.78,当x=161cm时,y=35.2+0.78x=35.2+0.78×161≈161cm故为:0.632,95%,0.78,161cm.29.若关于x,y的二元一次方程组m11mxy=m+12m至多有一组解,则实数m的取值范围是______.答案:关于x,y的二元一次方程组m11mxy=m+12m即二元一次方程组mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)当m-1≠0时(m2-1)x=m(m-1)至多有一组解∴m≠1故为:(-∞,1)∪(1,+∞)30.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.31.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D32.下列函数中,定义域为(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函数y=1x的定义域为(0,+∞),函数y=x的定义域为[0,+∞),函数y=1x2的定义域为{x|x≠0},函数y=12x的定义域为R,故只有A中的函数满足定义域为(0,+∞),故选A.33.m为何值时,关于x的方程8x2-(m-1)x+(m-7)=0的两根,
(1)为正数;
(2)一根大于2,一根小于2.答案:(1)设方程两根为x1,x2,则∵方程的两根为正数,∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由题意得f(2)<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- xx市供热计量改造项目可行性研究报告
- 商品房买卖合同集锦6篇
- 国家级产业园基础设施建设的技术方案
- 2024年水暖电施工劳务合同(含节能评估)范本3篇
- 小学板鞋竞速课程设计
- 2025届全国名校模考作文:“写一则文学短评”写作指导
- 站立式起跑微课程设计
- 2024年心理康复治疗服务协议范本3篇
- 童年治愈心理课程设计
- 2024年度员工健康促进活动集资管理协议3篇
- 2023年中证数据招聘笔试真题
- 木桶效应-课件
- 《中国制造业的崛起》课件
- 中小学学校安全管理制度汇编
- (DB45T 2522-2022)《桥梁缆索吊装系统技术规程》
- 广州沪教牛津版七年级英语上册期中试卷(含答案)
- 道法全册知识点梳理-2024-2025学年统编版道德与法治七年级上册
- 2025版国家开放大学法律事务专科《民法学(1)》期末考试总题库
- 四川省成都市2023-2024学年高二上学期期末考试+地理 含答案
- 人教版数学六年级上册期末考试试卷
- 2024年时事政治试题库附答案(综合题)
评论
0/150
提交评论