版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年上海民航职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.2.若圆锥的侧面展开图是弧长为2πcm,半径为2cm的扇形,则该圆锥的体积为______cm3.答案:∵圆锥的侧面展开图的弧长为2πcm,半径为2cm,故圆锥的底面周长为2πcm,母线长为2cm则圆锥的底面半径为1,高为1则圆锥的体积V=13?π?12?1=π3.故为:π3.3.现有编号分别为1,2,3,4,5,6,7,8,9的九道不同的数学题,某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到两题的编号分别为x,y,且x<y”.
(1)共有多少个基本事件?并列举出来.
(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.答案:(1)共有36种基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)设事件A=“两道题的编号之和小于17但不小于11”则事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15种.∴P(A)=1536=512.4.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C5.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C6.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为______cm.答案:以反射镜顶点为原点,以顶点和焦点所在直线为x轴,建立直角坐标系.设抛物线方程为y2=2px,依题意可点A(64,32)在抛物线上代入抛物线方程得322=128p解得p=8∴焦点坐标为(4,0),而光源到反射镜顶点的距离正是抛物线的焦距,即4cm.故为:4.7.已知命题p:∀x∈R,x2-x+1>0,则命题¬p
是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.8.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.9.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是______.答案:|z|=5,即点Z到原点O的距离为5∴z所对应点的轨迹为以(0,0)为圆心,5为半径的圆.10.求过点A(2,3)且被两直线3x+4y-7=0,3x+4y+8=0截得线段为32的直线方程.答案:设所求直线l的斜率为k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2条直线的夹角为45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直线的方程为y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.11.不等式的解集
.答案:;解析:略12.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()
A.
B.
C.1
D.答案:D13.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[
]
A.4
B.-4
C.-5
D.6答案:A14.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C15.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。16.直线l只经过第一、三、四象限,则直线l的斜率k()
A.大于零
B.小于零
C.大于零或小于零
D.以上结论都有可能答案:A17.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.18.已知椭圆的参数方程为(ϕ为参数),点M在椭圆上,点O为原点,则当ϕ=时,OM的斜率为()
A.1
B.2
C.
D.2答案:D19.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C20.已知向量=(1,1,-2),=(2,1,),若≥0,则实数x的取值范围为()
A.(0,)
B.(0,]
C.(-∞,0)∪[,+∞)
D.(-∞,0]∪[,+∞)答案:C21.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:
(1)与a相等的向量有
______;
(2)与b相等的向量有
______;
(3)与c相等的向量有
______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.22.如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,PD=2a3,∠OAP=30°,则CP=______.答案:因为点P是AB的中点,由垂径定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.23.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故为:(16,0,-19).24.已知二元一次方程组a1x+b1y=c1a2x+b2y=c2的增广矩阵是1-11113,则此方程组的解是______.答案:由题意,方程组
x-
y=1x+y=3解之得x=2y=1故为x=2y=125.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).26.某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
2
3
4
5
销售额y(万元)
27
39
48
54
根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()
A.65.5万元
B.66.2万元
C.67.7万元
D.72.0万元答案:A27.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)28.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()
A.k1<k2<k3
B.k3<k1<k2
C.k2<k1<k3
D.k3<k2<k1
答案:C29.在空间有三个向量AB、BC、CD,则AB+BC+CD=()A.ACB.ADC.BDD.0答案:如图:AB+BC+CD=AC+CD=AD.故选B.30.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)31.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为()
A.0.1
B.0.2
C.0.3
D.0.4答案:C32.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为______.答案:由题意知,OM是三角形PF1P的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故为4.33.如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=23,若∠CAP=30°,则⊙O的直径AB=______.答案:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=12AB,三角形BPC是一个等腰三角形,BC=BP=12AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故为:434.过点P(0,-2)的双曲线C的一个焦点与抛物线x2=-16y的焦点相同,则双曲线C的标准方程是()
A.
B.
C.
D.答案:C35.设求证:答案:证明见解析解析:证明:∵
∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。36.为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在[10.95,11.35)范围内的可能性是百分之几?答案:解(Ⅰ)分组频数累计频数频率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以产品直径落在[10.95,11.35)范围内的可能性为69%.37.有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:x=cosθy=22sinθ(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5
不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩阵M表示变换“顺时针旋转45°”∴矩阵M-1表示变换“逆时针旋转45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面积S△ABC=12×(3-1)×2=2,由于△ABC在旋转变换下所得△A1B1C1与△ABC全等,故三角形的面积不变,即S△A1B1C1=2.(2)(Ⅰ)曲线E的普通方程为x2+2y2=1L的参数方程为x=2+tcosαy=tsinα(t为参数)
(Ⅱ)将L的参数方程代入由线E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)证明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3当且仅当a=b=c=1,取等号.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,则2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,当且仅当a=b=1时,c有最大值1.38.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).39.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)40.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.41.数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).
(Ⅰ)用数学归纳法证明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….答案:(Ⅰ)证明:①当n=2时,a2=2≥2,不等式成立.②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.这就是说,当n=k+1时不等式成立.根据(1)、(2)可知:ak≥2对所有n≥2成立.(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)两边取对数并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式从1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12•1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).42.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D43.OA、OB(O为原点)是圆x2+y2=2的两条互相垂直的半径,C是该圆上任一点,且OC=λOA+μOB,则λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故为:144.用冒泡法对43,34,22,23,54从小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A45.已知点O为△ABC外接圆的圆心,且有,则△ABC的内角A等于()
A.30°
B.60°
C.90°
D.120°答案:A46.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么
这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.47.已知函数f(x)=x+3x+1(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤(3-1)n2n-1;
(Ⅱ)证明Sn<233.答案:证明:(Ⅰ)当x≥0时,f(x)=1+2x+1≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤(3-1)n2n-1.(1)当n=1时,b1=3-1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)•1-(3-12)n1-3-12<(3-1)•11-3-12=233.故对任意n∈N*,Sn<233.48.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send49.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=150.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).第2卷一.综合题(共50题)1.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.2.O、B、C为空间四个点,又、、为空间的一个基底,则()
A.O、A、B、C四点不共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D3.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.4.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.5.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展开式中,一共有多少项?答案:因为:从第一个括号中选一个字母有3种方法,从第二个括号中选一个字母有4种方法,从第三个括号中选一个字母有5种方法.故根据乘法计数原理可知共有N=3×4×5=60(项).6.若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=()
A.-2
B.2
C.-8
D.8答案:C7.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)8.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.9.给出下列结论:
(1)在回归分析中,可用指数系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)在回归分析中,可用相关系数r的值判断模型的拟合效果,r越大,模型的拟合效果越好;
(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
以上结论中,正确的有()个.
A.1
B.2
C.3
D.4答案:B10.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B11.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D12.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积为6,则△ABC的面积为()A.18B.54C.64D.72答案:∵ABCD为平行四边形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故选D13.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C14.要证明,可选择的方法有以下几种,其中最合理的是()
A.综合法
B.分析法
C.反证法
D.归纳法答案:B15.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()
A.=
B.与同向
C.∥
D.与有相同的位置向量答案:C16.已知向量,,,则(
)A.B.C.5D.25答案:C解析:将平方即可求得C.17.平行线l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为______.答案:将l1:3x-2y-5=0化成6x-4y-10=0∴l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为d=|-10-3|62+(-4)2=1352=132故为:13218.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.19.已知平面内的向量a,b,c两两所成的角相等,且|a|=2,|b|=3,|c|=5,则|a+b+c|的值的集合为______.答案:设平面内的向量a,b,c两两所成的角为α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,当α=0°时,|a+b+c|2=100,|a+b+c|=10,当α=120°时,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合为{7,10}.故为:{7,10}.20.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是______.答案:设所求抛物线方程为y2=ax,依题意42=2a∴a=8,故所求为y2=8x.故为:y2=8x21.已知椭圆C:+y2=1的右焦点为F,右准线l,点A∈l,线段AF交C于点B.若=3,则=(
)
A.
B.2
C.
D.3答案:A22.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.23.如图,椭圆C2x2a2+
y2b2=1的焦点为F1,F2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n为过原点的直线,l是与n垂直相交与点P,与椭圆相交于A,B两点的直线|op|=1,是否存在上述直线l使OA•OB=0成立?若存在,求出直线l的方程;并说出;若不存在,请说明理由.答案:(Ⅰ)由题意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴椭圆C的方程为x24+y33=1.(Ⅱ)设A、B两点的坐标分别为A(x1,y1),B(x2,y2),假设使OA•OB=0成立的直线l存在.(i)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点,且|OP|=1得|m|1+
k2=1,即m2=k2+1,由OA•OB=0得x1x2+y1y2=0,将y=kx+m代入椭圆得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化简得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③将m2=1+k2代入③并化简得-5(k2+1)=0矛盾.即此时直线l不存在.(ii)当l垂直于x轴时,满足|OP|=1的直线l的方程为x=1或x=-1,由A、B两点的坐标为(1,32),(1,-32)或(-1,32),(-1,-32).当x=1时,OA•OB=(1,32)•
(1,-32)=-54≠0.当x=-1时,OA•OB=(-1,32)•
(-1,-32)=-54≠0.∴此时直线l也不存在.综上所述,使OA•OB=0成立的直线l不成立.24.命题“存在实数x,,使x>1”的否定是()
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1答案:C25.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B26.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(
)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.27.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.28.一动圆与两圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线答案:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2-8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.29.设a,b,c是三个不共面的向量,现在从①a+b;②a-b;③a+c;④b+c;⑤a+b+c中选出使其与a,b构成空间的一个基底,则可以选择的向量为______.答案:构成基底只要三向量不共面即可,这里只要含有向量c即可,故③④⑤都是可以选择的.故为:③④⑤(不唯一,也可以有其它的选择)30.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C31.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].32.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A33.已知四边形ABCD,
点E、
F、
G、
H分别是AB、BC、CD、DA的中点,
求证:
EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.34.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:235.已知曲线C的参数方程是(θ为参数),曲线C不经过第二象限,则实数a的取值范围是()
A.a≥2
B.a>3
C.a≥1
D.a<0答案:A36.在语句PRINT
3,3+2的结果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B37.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足
(1)判断三个向量是否共面;
(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,38.不论k为何实数,直线y=kx+1与曲线x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是______.答案:直线y=kx+1恒过(0,1)点,与曲线x2+y2-2ax+a2-2a-4=0恒有交点,必须定点在圆上或圆内,即:a2+12
≤4+2a所以,-1≤a≤3故为:-1≤a≤3.39.已知,,那么P(B|A)等于()
A.
B.
C.
D.答案:B40.双曲线的渐近线方程是3x±2y=0,则该双曲线的离心率等于______.答案:∵双曲线的渐近线方程是3x±2y=0,∴ba=32,设a=2k,b=3k,则c=13k,∴e=ca=132.:132.41.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为336=112故选C.42.下表表示y是x的函数,则函数的值域是
______.
答案:有图表可知,所有的函数值构成的集合为{2,3,4,5},故函数的值域为{2,3,4,5}.43.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10544.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221345.下面四个结论:
①偶函数的图象一定与y轴相交;
②奇函数的图象一定通过原点;
③偶函数的图象关于y轴对称;
④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),
其中正确命题的个数是()A.1B.2C.3D.4答案:偶函数的图象关于y轴对称,但不一定与y轴相交,因此①错误,③正确;奇函数的图象关于原点对称,但不一定经过原点,只有在原点处有定义才通过原点,因此②错误;若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,只要定义域关于原点对称即可,因此④错误.故选A.46.①某寻呼台一小时内收到的寻呼次数X;
②长江上某水文站观察到一天中的水位X;
③某超市一天中的顾客量X.
其中的X是连续型随机变量的是()
A.①
B.②
C.③
D.①②③答案:B47.设a1,a2,…,an为实数,证明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:证明:不妨设a1≤a2≤…≤an,则由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:a1+a2+…+ann≤a21+a22+…+a2nn.48.如图所示,已知点P为菱形ABCD外一点,且PA⊥面ABCD,PA=AD=AC,点F为PC中点,则二面角CBFD的正切值为()
A.
B.
C.
D.
答案:D49.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()
A.171
B.184
C.200
D.392答案:C50.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b,组成复数a+bi,其中虚数有()
A.36个
B.42个
C.30个
D.35个答案:A第3卷一.综合题(共50题)1.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x52.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.3.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.4.
已知向量a,b的夹角为,且|a|=2,|b|=1,则向量a与向量2+2b的夹角等于()
A.
B.
C.
D.答案:D5.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.6.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A7.两个样本甲和乙,其中=10,=10,=0.055,=0.015,那么样本甲比样本乙波动()
A.大
B.相等
C.小
D.无法确定答案:A8.已知0<α<π2,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围______.答案:方程x2sinα+y2cosα=1化成标准形式得:x21sinα+y21cosα=1.∵方程表示焦点在y轴上的椭圆,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范围是(π4,π2)故为:(π4,π2)9.如图,在棱长为2的正方体ABCD-A1B1C1D1中,以底面正方形ABCD的中心为坐标原点O,分别以射线OB,OC,AA1的指向为x轴、y轴、z轴的正方向,建立空间直角坐标系.试写出正方体八个顶点的坐标.答案:解设i,j,k分别是与x轴、y轴、z轴的正方向方向相同的单位坐标向量.因为底面正方形的中心为O,边长为2,所以OB=2.由于点B在x轴的正半轴上,所以OB=2i,即点B的坐标为(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即点B1的坐标为(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).10.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|
|b|=121•3=721.故为721.11.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能答案:C12.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣113.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.14.设集合A={x|x<1,x∈R},B={x|1x>1,x∈R},则下列图形能表示A与B关系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以对应的关系选A.故选A.15.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B16.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C17.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.18.已知平面向量a=(0,1),b=(x,y),若a⊥b,则实数y=______.答案:由题意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故为019.下面程序运行后,输出的值是()
A.42
B.43
C.44
D.45
答案:C20.已知曲线,
θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形答案:C21.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(12分)[解法一]∵该直线上的任一点P(x,y),其经变换后得到的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,当b≠0时,方程组-(3k+1)=1k-3=k无解,故这样的直线不存在.
…(16分)当b=0时,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)[解法二]取直线上一点P(-bk,0),其经变换后的点Q(-bk,-3bk)仍在该直线上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直线为y=kx,取直线上一点P(0,k),其经变换后得到的点Q(1+3k,3-k)仍在该直线上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)22.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故选A23.已知x、y之间的一组数据如下:
x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C24.某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?答案:以AB的中点为原点,AB所在直线为x轴建立直角坐标系设椭圆方程为:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因为焦点A的正西方向椭圆上的点为左顶点,所以a-c=20------(5分)又|AB|=2c=40,则c=20,a=40,故b=203------(7分)所以鱼群的运动轨迹方程是x21600+y21200=1------(8分)由于A,B两岛收到鱼群反射信号的时间比为5:3,因此设此时距A,B两岛的距离分别为5k,3k-------(10分)由椭圆的定义可知5k+3k=2×40=80⇒k=10--------(13分)即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)25.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为
______,在Oy轴上的点P2的坐标特点为
______,在Oz轴上的点P3的坐标特点为
______,在xOy平面上的点P4的坐标特点为
______,在yOz平面上的点P5的坐标特点为
______,在xOz平面上的点P6的坐标特点为
______.答案:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).26.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1427.平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成12(n2+n+2)块.答案:证明:(1)当n=1时,1条直线把平面分成2块,又12(12+1+2)=2,命题成立.(2)假设n=k时,k≥1命题成立,即k条满足题设的直线把平面分成12(k2+k+2)块,那么当n=k+1时,第k+1条直线被k条直线分成k+1段,每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.所以k+1条直线把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]块,这说明当n=k+1时,命题也成立.由(1)(2)知,对一切n∈N*,命题都成立.28.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:1618或138229.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1230.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 齐齐哈尔市富拉尔基区公益性岗位招聘真题
- 2023年泸州市纳溪区委组织部转任公务员考试真题
- 胃间质瘤手术护理查房
- 精彩新年致辞(14篇)
- 申请组长申请书6篇
- 生活垃圾焚烧发电和污泥处理建设项目可行性研究报告
- 酱油工厂的实习心得5篇
- 扫墓免责协议书范本
- 销售的年度体会总结5篇
- 物联网项目招投标会签流程
- 蓝天救援队队员风险告知书
- 《工程勘察设计收费管理规定》计价格2002-10号文
- 宿舍消防疏散图
- 站场明敷接地扁钢安装技术要求
- 《个人防护用品PPE》ppt课件
- 国际贸易SimTrade外贸实习报告
- 导师带徒实施办法6、30
- 《Fishing with Grandpa》RAZ分级阅读绘本pdf资源
- 水稳施工方案(完整版)
- 跨海大桥施工方案
- MATLAB语言课程论文 基于MATLAB的电磁场数值图像分析
评论
0/150
提交评论