下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市神峪沟中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,是半径为5的圆上的一个定点,单位向量在点处与圆相切,点是圆上的一个动点,且点与点不重合,则的取值范围是(
)
A.
B.
C.
D.
参考答案:B略2.如图所示,已知一个空间几何体的三视图,则该几何体的体积为
.参考答案:8、若变量满足约束条件且的最大值为,最小值为,则的值是(
)(A) (B) (C) (D)参考答案:C4.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为A.
B.C.
D.
参考答案:D5.若直线与曲线有公共点,则b的取值范围是(
)A.
B.
C.
D.参考答案:D6.已知集合,,,则=
A.
B.C.
D.
参考答案:C略7.已知直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,则实数m的值为()A.l或0 B.0 C.﹣1或0 D.l或﹣1参考答案:B【考点】直线与圆的位置关系.【分析】先求出圆x2+y2=1的圆心和半径,由直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,得圆心C(0,0)到直线x﹣my﹣1﹣m=0的距离等于半径,由此能求出m.【解答】解:∵圆x2+y2=1的圆心(0,0),半径r=1,直线x﹣my﹣1﹣m=0与圆x2+y2=1相切,∴圆心C(0,0)到直线x﹣my﹣1﹣m=0的距离d==1,m=0.故选:B.8.甲、乙、丙等个人排成一排照相,且甲、乙不在丙的同侧,则不同的排法共有(
). A. B. C. D.参考答案:B先排甲、乙、丙,共有种排法,再将剩余人插进去,∴人排成一排,甲、乙不在丙同侧的排法共有种.故选.9.已知x,y满足,若目标函数z=y﹣x的最小值是﹣4,则k的值为()A. B.﹣3 C. D.﹣2参考答案:C【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【解答】解:由z=y﹣x得y=x+z,若z=y﹣x的最小值为﹣4,即y﹣x=﹣4,即y=x﹣4,则不等式对应的区域在y=x﹣4的上方,先作出对应的图象,由得,即C(4,0),同时C(4,0)也在直线kx﹣y+2=0上,则4k+2=0,得k=,故选:C.10.已知全集U={1,2,3,4,5,6,7),M={1,3,5,6},N={2,3,5},则CU(MN)=A.{1,4,6,7}
B.{2,4,6,7} C.{1,2,4,6,7} D.{1,3,4,6,7}
参考答案:C【知识点】交、并、补集的混合运算由题意知M∩N={3,5},则CU(MN)={1,2,4,6,7},故选C.【思路点拨】求出M∩N,即可求解CU(M∩N)即可.
二、填空题:本大题共7小题,每小题4分,共28分11.设l、m、n表示条不同直线,α、β、γ表示三个不同平面,给出下列四个命题,下列选项中都是真命题的是
.①若l⊥α,m⊥α,则l//m;②若mβ,n是l在β内的射影,且m⊥l,则m⊥n;③若mα,m//n,则n//α;④若α⊥γ,β⊥γ,则α//β.参考答案:①②12.已知单位向量,的夹角为60°,则__________参考答案:13.在正三棱锥S﹣ABC中,AB=,M是SC的中点,AM⊥SB,则正三棱锥S﹣ABC外接球的球心到平面ABC的距离为.参考答案:【考点】棱锥的结构特征.【分析】利用正三棱锥S﹣ABC和M是SC的中点,AM⊥SB,找到SB,SA,SC之间的关系.在求正三棱锥S﹣ABC外接球的球心与平面ABC的距离.【解答】解:取AC的中点N,连接BN,因为SA=SC,所以AC⊥SN,由∵△ABC是正三角形,∴AC⊥BN.故AC⊥平面SBN,AC⊥BC.又∵AM⊥SB,AC∩AM=A,∴SB⊥平面SAC,SB⊥SA且SB⊥SC故得到SB,SA,SC是三条两两垂直的.可以看成是一个正方体切下来的一个正三棱锥.故外接圆直径2R=∵AB=,∴SA=1.那么:外接球的球心与平面ABC的距离为正方体对角线的,即d=.故答案为:.14.函数的最大值为_______参考答案:1【分析】因为,所以可以把函数解析式化简,再逆用两角差的正弦公式化简函数解析式,利用正弦函数的性质求出最大值.【详解】,所以,因此的最大值为1.【点睛】本题考查了二角差的正弦公式的逆用,正弦型函数的最值,考查了三角恒等变换.15.已知展开式中的常数项为60,则
.参考答案:4的通项公式为,令,,,故答案为.
16.三棱锥中,、、、分别为、、、的中点,则截面将三棱锥分成两部分的体积之比为
.参考答案:
17.计算
。参考答案:试题分析:因为,所以.考点:任意角的三角函数.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=sin2x﹣cos2x﹣,x∈R.(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=,f(C)=0,若sinB=2sinA,求a,b的值.参考答案:解:(1)f(x)=sin2x﹣cos2x﹣=sin2x﹣﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,∵﹣1≤sin(2x﹣)﹣≤1,∴f(x)的最小值为﹣2,又ω=2,则最小正周期是T==π;(2)由f(C)=sin(2C﹣)﹣1=0,得到sin(2C﹣)=1,∵0<C<π,∴﹣<2C﹣<,∴2C﹣=,即C=,∵sinB=2sinA,∴由正弦定理得b=2a①,又c=,∴由余弦定理,得c2=a2+b2﹣2abcos,即a2+b2﹣ab=3②,联立①②解得:a=1,b=2.略19.如图,在长方体ABCD-A1B1C1D1中,O为D1B1的中点,,.(1)证明:CO⊥平面AB1D1;(2)求三棱锥O-AB1C的体积.参考答案:(1)见解析(2).(1)证明:在长方体中,∵,,∴,∵为的中点,∴,同理,求解三角形可得,∵,∴,即.∵,∴平面.(2)解:由(1)知,平面,为直角三角形,且.∴.20.在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρ?cosθ+4)?cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为(t为参数).(Ⅰ)求C1,C2的直角坐标方程;(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|﹣|JK||的值.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由ρ2=x2+y2,x=ρcosθ,y=ρsinθ,能求出C1,C2的直角坐标方程.(Ⅱ)设四点在C上的排列顺次至上而下为H,I,J,K,它们对应的参数分别为t1,t2,t3,t4,连结C1,J,则△C1IJ为正三角形,||HI|﹣|JK||=||HI|﹣|IK|+|IJ||=||t1|﹣|t4|+1|=|﹣(t1+t4)+1|,把曲线C的参数方程代入y2=4x,得3t2+8t﹣32=0,由此能求出||HI|﹣|JK||的值.【解答】解:(Ⅰ)∵曲线C1:ρ=2cosθ,∴ρ2=2ρcosθ,∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,∴曲线C1的直角坐标方程为(x﹣1)2+y2=1.∵曲线C2:ρ=(ρ?cosθ+4)?cosθ.∴ρ2sin2θ=4ρcosθ,∴曲线C2的直角坐标方程为y2=4x.(Ⅱ)不妨设四点在C上的排列顺次至上而下为H,I,J,K,它们对应的参数分别为t1,t2,t3,t4,如图,连结C1,J,则△C1IJ为正三角形,∴|IJ|=1,||HI|﹣|JK||=||HI|﹣|IK|+|IJ||=||t1|﹣|t4|+1|=|﹣(t1+t4)+1|,把曲线C的参数方程为(t为参数)代入y2=4x,得:,即3t2+8t﹣32=0,故,∴||HI|﹣|JK||=.21.(本小题满分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,(1)求证:AD⊥面SBC;(2)求二面角A-SB-C的大小.参考答案:(1)证明:
又面
又AC∩SA=A,
面
…………2分∵AD平面SAC,
……………4分又面
………6分(2)由(1)AD⊥面SBC,过D作DE⊥BS交BS于E,连结AE,则∠AED为二面角A-SB-C的平面角,………8分,由AS=BC=1,AC=2,得AD=,………….10分在直角△ADE中,,即二面角A-SB-C的大小为………12分.略22.已知圆O和圆C的极坐标方程分别为ρ=2和ρ=4sinθ,点P为圆O上任意一点.(1)若射线OP交圆C于点Q,且其方程为θ=,求|PQ|得长;(2)已知D(2,π),若圆O和圆C的交点为A,B,求证:|PA|2+|PB|2+|PD|2为定值.参考答案:【考点】Q4:简单曲线的极坐标方程.【分析】(1)θ=代入ρ=4sinθ,可得ρ=2,即可求出|PQ|;(2)求出A,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论