2022-2023学年四川省都江堰市初中考数学全真模拟试卷含解析_第1页
2022-2023学年四川省都江堰市初中考数学全真模拟试卷含解析_第2页
2022-2023学年四川省都江堰市初中考数学全真模拟试卷含解析_第3页
2022-2023学年四川省都江堰市初中考数学全真模拟试卷含解析_第4页
2022-2023学年四川省都江堰市初中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>02.若二次函数的图像与轴有两个交点,则实数的取值范围是()A. B. C. D.3.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±24.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④5.一个圆的内接正六边形的边长为2,则该圆的内接正方形的边长为()A. B.2 C.2 D.46.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.67.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B. C. D.8.下列运算正确的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣19.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或10.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣3二、填空题(本大题共6个小题,每小题3分,共18分)11.在直角三角形ABC中,∠C=90°,已知sinA=3512.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)13.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于_____;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.15.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.16.如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为________(结果保留).三、解答题(共8题,共72分)17.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.18.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别

成绩(分)

频数(人数)

频率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a=,b=;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.19.(8分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.20.(8分)先化简,再求值:,其中x=-521.(8分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.22.(10分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为_____.23.(12分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.24.列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.【详解】∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.2、D【解析】

由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.3、D【解析】

根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=的图象上,可得:,,解得:,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.4、B【解析】

由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.5、B【解析】

圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是1.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.6、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.7、C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=.故选C.8、D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.9、B【解析】

根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.10、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、35【解析】试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.试题解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考点:互余两角三角函数的关系.12、40【解析】

利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.13、5【解析】

根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则318=x所以另一段长为18-3=15,因为15÷3=5,所以是第5张.故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.14、5见解析.【解析】

(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为,∵AB2=AD•AC,∴AD=AB2÷AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.15、﹣24【解析】分析:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,∵四边形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四边形AOED和四边形DECB都是平行四边形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴点C的坐标为,∵点C在反比例函数的图象上,∴k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.16、.【解析】

连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【详解】解:如图所示,连接OA,OB,OC,∵正六边形内接于∴∠AOB=60°,四边形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面积=△BGC的面积∵弓形DE的面积=弓形AB的面积∴阴影部分的面积=弓形DE的面积+△ABC的面积=弓形AB的面积+△AGB的面积+△BGC的面积=弓形AB的面积+△AGB的面积+△AGO的面积=扇形OAB的面积==故答案为.【点睛】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.三、解答题(共8题,共72分)17、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【解析】

(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.18、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图19、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】

(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.20、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:.当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.21、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).【解析】

(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.【详解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函数y=的图像经过A、B两点,∴,解得:,∴二次函数的关系式为y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,),则E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴当m=2时,PD+PE有最大值3.(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).∴=,解得:t=2,∴圆心O1的坐标为(,-2),∴半径为.设M(,y).∵MO1=,∴,解得:y=,∴点M的坐标为().②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0),∴O2D=1,∴DM==,∴点M的坐标为(,).综上所述:点M的坐标为(,)或(,).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.22、S阴影=2﹣.【解析】

由切线的性质和平行四边形的性质得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论