下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市秀容中学2021-2022学年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个几何体的三视图如图所示,则该几何体的表面积是()A. B.5 C. D.参考答案:A【考点】L!:由三视图求面积、体积.【分析】几何体为边长为1的正方体切去一个三棱锥得到的,共含有7个面.【解答】解:由三视图可知该几何体为边长为1的正方体切去一个三棱锥得到的,三棱锥的底面边长为正方体相邻三个面的对角线长,剩余几何体有3个面为原正方体的面,有3个面为原正方体面的一半,有1个面为等边三角形,边长为原正方体的面对角线长.∴几何体的表面积为1×3++()2=.故选A.2.下列函数中既是奇函数,又是其定义域上的增函数的是(
)A.
B.
C.
D.参考答案:C略3.关于直线、与平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若且,则;其中真命题的序号是(
).A.①②
B.②③
C.①④
D.③④参考答案:B4.在△ABC中,已知,则C=(
)A.300
B.1500
C.450
D.1350参考答案:C5.给出下面7个关系式:①②
③④⑤
⑥⑦,其中正确的个数是
A
3
B
4
C
5
D6参考答案:B6.的零点在下列哪个区间内(
)
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)参考答案:B7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为()A.8+4 B.8+4 C.8+16 D.8+8参考答案:A【考点】由三视图求面积、体积.【分析】由三视图知该几何体是三棱锥,由三视图求出棱长、判断出线面的位置关系,由条件和面积公式求出各个面的面积,加起来求出几何体的表面积.【解答】解:根据三视图和题意知几何体是三棱锥P﹣ABC,直观图如图所示:D是AC的中点,PB⊥平面ABC,且PD=BD=2,∴PB⊥AB,PB⊥BC,PB⊥BD,则PB=2,∵底面△ABC是等腰三角形,AB=BC=2,AC=4,∴PA=PC=2,∴该几何体的表面积S==8+4,故选A.8.设集合和集合都是自然数集,映射把集合中的元素映射到集合中的元素,则在映射下,像20的原像是()A.2
B.
3
C.4
D.
5参考答案:C略9.设α,β是两个不同的平面,l,m是两条不同的直线,且lα,mβ.下列命题正确的是().A.若l⊥β,则α⊥β
B.若α⊥β,则l⊥mC.若l∥β,则α∥β
D.若α∥β,则l∥m参考答案:A10.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.1参考答案:B【分析】首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则cosα=.参考答案:【考点】GP:两角和与差的余弦函数.【分析】先确定α+的范围,求得cos(α+)的值,进而利用余弦的两角和公式求得答案.【解答】解:∵,,∴∈(﹣,),∴cos()==,∴cosα=cos(α+﹣)=cos(α+)cos+sin(α+)sin==.故答案为:.12.在等比数列中,已知,,,则项数
.参考答案:
4
略13.已知ABC满足,则ABC的形状是三角形。参考答案:直角三角形
解析:注意到已知等式关于A,B的对称性,为便于推理,我们在这里不妨设A,B为锐角,
则有
故由此可得
∴cosC=0即C=90°∴ABC为Rt14.设函数f(x)=,则f(f())=
.参考答案:1【考点】函数的值.【分析】先求出==4,从而f(f())=f(4),由此能求出结果.【解答】解:∵f(x)=,∴==4,f(f())=f(4)==1.故答案为:1.15.已知实数满足,则的最大值为
.参考答案:416.设集合,,若,则a的取值范围为________.参考答案:.【分析】先化简集合A,再根据得到关于a的不等式求出a的取值范围.【详解】由得,∴,由得,∴.又当时,满足,时,也满足,∴.故答案为【点睛】(1)本题主要考查集合的化简和关系运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用数轴处理集合的交集、并集、补集运算时,要注意端点是实心还是空心,在含有参数时,要注意验证区间端点是否符合题意.17.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)如图,长方体中,,点是棱上一点(I)当点在上移动时,三棱锥的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积(II)当点在上移动时,是否始终有,证明你的结论。参考答案:(I)三棱锥的体积不变,所以(II)当点在上移动时,始终有,证明:连结,四边形是正方形,所以,因为,
19.如图,以坐标原点O为顶点,x轴的非负半轴为始边分别作角与(0<<<),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(-,).
(I)求的值;
(II)若,求的值.参考答案:20.已知函数.(1)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围;(2)若函数y=f(x)在[m,n]上的值域是[m,n],求实数a的取值范围.参考答案:【考点】函数恒成立问题;函数的值域.【分析】(1)由f(x)<2x在(1,+∞)上恒成立,得a<+2x.记g(x)=+2x,在(1,+∞)上是增函数,得g(x)>g(1)=3,由此能求出a的范围.(2)函数y=f(x)的定义域为(﹣∞,0)∪(0,+∞),再由n>m>0和0>n>m两种情况分别讨论实数a的取值范围.【解答】解:(1)若f(x)<2x在(1,+∞)上恒成立,得a﹣<2x即a<+2x,记g(x)=+2x,在(1,+∞)上是增函数,得g(x)>g(1)=3,所以:a≤3(2)函数y=f(x)的定义域为(﹣∞,0)∪(0,+∞)ⅰ)当n>m>0时,f(x)在[m,n]上是增函数,故,解得:a>2;ⅱ)当0>n>m时,f(x)在[m,n]上是减函数,故,解得:a=0;所以:a∈{0}∪(2,+∞).21.(本小题满分13分)已知数列,其前项和为.(1)求数列的通项公式,并证明数列是等差数列;(2)如果数列满足,请证明数列是等比数列;(3)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.参考答案:解:(Ⅰ)当时,,
……………1分当时,.
……………2分又满足,
……………3分
.
………………4分∵
,∴数列是以5为首项,为公差的等差数列.
………………5分
(Ⅱ)由已知得
,
………6分∵
,
……7分又,∴数列是以为首项,为公比的等比数列.
………………8分(Ⅲ)
……10分
∴
.
……11分∵
,∴单调递增.∴.
…12分∴,解得,因为是正整数,∴.………………13分略22.在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.参考答案:【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晋中师范高等专科学校《通信电子线路》2023-2024学年第一学期期末试卷
- 鹤壁职业技术学院《房地产营销策划实务》2023-2024学年第一学期期末试卷
- 重庆三峡学院《项目开发》2023-2024学年第一学期期末试卷
- 重庆财经学院《语文教学与文本解读》2023-2024学年第一学期期末试卷
- 浙江工业职业技术学院《会计学原理》2023-2024学年第一学期期末试卷
- 国家一级保护植物水杉的故事
- 中国传媒大学《英语创新创业教育》2023-2024学年第一学期期末试卷
- 长治幼儿师范高等专科学校《水质程学实验课》2023-2024学年第一学期期末试卷
- 企业能源管理系统节能减排计划
- 数据结构讲解模板
- 小学二年级100以内进退位加减法800道题
- 2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)语文试题
- 《立式辊磨机用陶瓷金属复合磨辊辊套及磨盘衬板》编制说明
- 保险公司2025年工作总结与2025年工作计划
- 育肥牛购销合同范例
- 暨南大学珠海校区财务办招考财务工作人员管理单位遴选500模拟题附带答案详解
- (精心整理)高中生物必修二非选择题专题训练
- 小学二年级100以内进退位加减法混合运算
- 福建省流动人口信息登记表
- 市委组织部副部长任职表态发言
- HXD1D客运电力机车转向架培训教材
评论
0/150
提交评论