下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市大学美术学院附属中学2021年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数,则z的共轭复数(
)A. B. C. D.参考答案:B【分析】直接利用复数的运算,化简复数为代数形式,再根据共轭复数的概念,即可求解.【详解】由,由共轭复数的概念,可得,故选B.【点睛】本题主要考查了复数的运算,以及共轭复数的应用,其中解答中熟记复数的运算,以及共轭复数的概念是解答的关键,着重考查了运算与求解能力,属于基础题.2.如图所示的算法流程图中(注:“”也可写成“”或“”,均表示赋值语句),第3个输出的数是(
)A.1
B.C.
D.参考答案:C3.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是A.
B.
C.
D.
都不对
参考答案:B略4.在等差数列{an}中,a1=1,公差d=2,则a8等于()A.13 B.14 C.15 D.16参考答案:C【考点】等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:由题意可得:a8=1+2×(8﹣1)=15.故选;C.5.集合A={x|﹣1≤x≤2},B={x|x<1},则A∩B=()A.{x|x<1}B.{x|﹣1≤x≤2}C.{x|﹣1≤x≤1}D.{x|﹣1≤x<1}参考答案:D【考点】交集及其运算.【分析】利用交集和数轴即可求出A∩B.【解答】解:A∩B={x|﹣1≤x≤2}∩{x|x<1}={x|﹣1≤x≤2,且x<1}={x|﹣1≤x<1}.故选D.6.关于正态曲线性质的描述,正确的是(
)①曲线关于直线对称,并且曲线在轴上方;②曲线关于轴对称,且曲线的最高点的坐标是;③曲线最高点的纵坐标是,且曲线没有最低点;④当越大,曲线越“高瘦”,当越小,曲线越“矮胖”。A.①②
B.①③
C.②③
D.③④
参考答案:B略7.已知圆C:,直线
,圆上只有两个点到直线的距离为1,则k的取值范(
)
A.
B.
C.
D.参考答案:C8.观察,,
,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A.
B.
C.
D.参考答案:D略9.若直线∥平面,直线,则与的位置关系是(
)A、∥
B、与异面
C、与相交
D、与没有公共点参考答案:D10.经过圆的圆心C,且与直线垂直的直线方程是(
)A.
B.
C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.(1)下面算法的功能是
。(2)下列算法输出的结果是(写式子)
(3)下图为一个求20个数的平均数的程序,在横线上应填充的语句为
参考答案:(1)统计x1到x10十个数据中负数的个数。(2)(3)i>20无12.如图,在三棱锥中,是边长为2的正三角形,,平面分别与三棱锥的四条棱交于,若直线,直线,则平面与平面所成二面角(锐角)的余弦值等于_______________________
参考答案:13.设某种机械设备能够连续正常工作10000小时的概率为0.85,能够连续正常工作15000小时的概率为0.75,现有一台连续工作了10000小时的这种机械,它能够连续正常工作到15000小时的概率是
.参考答案:
14.(3+)9展开式中的常数为______.参考答案:84略15.定义运算,若复数满足,其中为虚数单位,则复数
.参考答案:16.已知直线L过双曲线C的一个焦点,且与C的对称轴垂直,L与C交于A,B两点,为C的实轴长的2倍,C的离心率为_______________参考答案:略17.下表给出了一个“三角形数阵”:
ks*5u
依照表中数的分布规律,可猜得第6行第4个数是.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数的最大值为,最小值为,求此函数式。参考答案:解析:显然可以成立,当时,方程必然有实数根,即是方程的两个实数根则19.(本题满分10分)2011年3月,日东发生了9。0级地震,地震引发了海啸及核泄漏某国际组织用分层抽样的方法从心理专家、核专家、地质专家三类专家中抽取若干人组成研究团队赴日东工作,有关数据见表1:(单位:人)
核专家为了检测当地动物受核辐射后对身体健康的影响,随机选取了110只羊进行了检测,并将有关数据整理为不完整的2×2列联表(表2)附:临界值表K2=K02.0722.7063.8415.0246.6357.87910.828P(K2≥K0)0.150.100.050.0250.0100.0050.001(1)求研究小组的总人数
(2)写出表中的A、B、C、D、E值,并判断有多大把握认为羊受到高度辐射与身体不健康有关。参考答案:解:(1)由得所以总人数为。(2)根据列联表得A=20,B=50,C=80,D=30,E=110>6.635所以有的把握认为羊收到高度辐射与身体不健康有关。20.某校有学生会干部7名,其中男干部有,A,A,A共4人;女干部有B,B,B共3人.从中选出男、女干部各1名,组成一个小组参加某项活动.(Ⅰ)求A被选中的概率;(Ⅱ)求A,B不全被选中的概率.参考答案:解:(I)从7名学生会干部中选出男干部、女干部各1名,其一切可能的结果共有12种:
(),(),(),(),
(),(),(),(),
(),(),(),().……………4分用M表示“被选中”这一事件,则M中的结果有3种:(),(,().由于所有12种结果是等可能的,其中事件M中的结果有3种.因此,由古典概型的概率计算公式可得:P(M)=
………
6分(Ⅱ)用N表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件.由于中只有()一种结果.
∴P()=
由对立事件的概率公式得:P(N)=1一P()=1一=.
………12分略21.设函数.(1)当时,求函数的零点个数;(2)若,使得,求实数m的取值范围.参考答案:(1)见解析;(2)(2,+∞)【分析】(1)利用的符号讨论函数的单调性,结合零点存在定理可得零点的个数.(2)不等式有解等价于对任意恒成立即,构建新函数,求出后分和分类讨论可得实数的取值范围.【详解】解:(1),即,则,令解得.当在上单调递减;当在上单调递增,所以当时,.因为,所以.又,,所以,,所以分别在区间上各存在一个零点,函数存在两个零点.(2)假设对任意恒成立,即对任意恒成立.令,则.①当,即时,且不恒为0,所以函数在区间上单调递增.又,所以对任意恒成立.故不符合题意;②当时,令,得;令,得.所以函数在区间上单调递减,在区间上单调递增,所以,即当时,存在,使,即.故符合题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高速公路ETC系统升级改造合同
- 2025年度智能物流平台合作返点合同范本4篇
- 2025年度现代农业设施承揽合同补充协议4篇
- 2025年度油气储罐安全检测与改造合同4篇
- 2025年10kv线路施工绿色环保与节能减排合同3篇
- 2025年度智能车位租赁合同转让协议书(全新版)4篇
- 2024年车辆购销合同示范文本
- 2025年度智能储煤场租赁管理服务合同4篇
- 2024矿用设备租赁合同
- 2025年度城市更新改造项目承包合同签约与历史文化保护协议(2024版)3篇
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
- 视网膜中央静脉阻塞护理查房课件
评论
0/150
提交评论