版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2.2三角形全等的判定
我们学过哪几种判定三角形全等的方法?1、全等三角形概念:三条边对应相等,三个角对应相等。2、全等三角形判定条件(一)三边对应相等的两个三角形全等。简称“边边边”或“SSS”已知△ABC,画一个△A′B′C′使AB=A′B′,AC=A′C′,∠A=∠A′。结论:两边及夹角对应相等的两个三角形全等?思考:①
△A′B′C′与△ABC
全等吗?如何验正?画法:1.画∠DA′E=∠A;2.在射线AD上截取A′B′=AB,在射线A′E上截取A′C′=AC;3.连接B′C′.′ACBA′EDCB′′思考:②这两个三角形全等是满足哪三个条件?探索边角边边角边公理
有两边和它们的夹角对应相等的两个三角形全等.可以简写成
“边角边”或“SAS
”
S
——边
A——角三角形全等判定方法二用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)
两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EF在下列图中找出全等三角形1ر30º8cm9cm6ر30º8cm8cmⅣ48cm5cm230ºر8cm5cm530º8cmر5cm88cm5cmر30º8cm9cm7Ⅲر30º8cm8cm3练习1.已知:AO=DO,OB=OC,求证:△AOB≌△DOCCABDO2.已知:如图:AC=AD,∠CAB=∠DAB.
求证:△ACB≌△ADB.CADB△ACB≌△ADB这两个条件够吗?(2).如图,在△AEC和△ADB中,已知AE=AD,AC=AB,请说明△AEC≌△ADB的理由。____=____∠A=∠A_____=________∴△AEC≌△ADB()AEBDCAEADACAB(SAS)解:在△AEC和△ADB中∴△AEC≌△ADB问题:如图有一池塘。要测池塘两端A、B的距离,可无法直接达到,因此这两点的距离无法直接量出。你能想出办法来吗?ABABCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB连结ED,那么量出DE的长,就是A、B的距离.为什么?ABCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB连结ED,那么量出DE的长,就是A、B的距离.为什么?回到初始问题???ABCED分析:如果能证明△ABC≌△DEC,就可以得出CD=AB证明:在△ABC和△DEC中CA=CD
∠ACB=∠DCE
CB=CE∴△ABC≌△DEC(SAS)
∴
CD=AB
练习:
3.已知:如图,AB=ACAD=AE.求证:△ABE≌△ACD.证明:在△ABE和△ACD中,AB=AC(已知),AE=AD(已知),∠A=∠A(公共角),∴△
ABE≌△ACD(SAS).BEACD证明三角形全等的步骤:1.写出在哪两个三角形中证明全等。(注意把表示对应顶点的字母写在对应的位置上).2.按边、角、边的顺序列出三个条件,用大括号合在一起.3.证明全等后要有推理的依据.ABFDCE1、如图,已知点E、F在BC上,BE=CF,AB=DC,∠B=∠C。求证:∠A=∠DA45°
探索边边角BB′C10cm
8cm
8cm
两边及其中一边的对角对应相等的两个三角形全等吗?已知:AC=10cm,BC=8cm,∠A=45°.△ABC的形状与大小是唯一确定的吗?10c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学学案:课堂导学基本逻辑联结词
- 西药学综合知识与技能题库及答案(2201-2400题)
- 从国际国内形势看国家安全
- 加强医疗安全巡查措施
- 《通则》贸易术语课件
- 《光敏氧化反应》课件
- 中班活动诚实的小狐狸
- 大班数学活动谁最多
- 《奥林匹克运动会》课件
- 住院患者的心理护理
- YY 0569-2005生物安全柜
- juniper防火墙培训(SRX系列)
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
评论
0/150
提交评论