高中数学北师大版第一章立体几何初步 精品_第1页
高中数学北师大版第一章立体几何初步 精品_第2页
高中数学北师大版第一章立体几何初步 精品_第3页
高中数学北师大版第一章立体几何初步 精品_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,那么必有()A.平面ABD⊥平面ADC B.平面ABD⊥平面ABCC.平面ADC⊥平面BCD D.平面ABC⊥平面BCD解析:如图,∵AD⊥BC,AD⊥BD,∴AD⊥平面BCD.又AD平面ADC,∴平面ADC⊥平面BDC.答案:C2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若a∥b,a∥α,则b∥α B.若α⊥β,a∥α,则a⊥βC.若α⊥β,a⊥β,则a∥α D.若a⊥b,a⊥α,b⊥β,则α⊥β解析:A错,可能bα;B错;C错,可能aα.只有D正确.答案:D3.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:由题意知,在四边形ABCD中,CD⊥BD,在三棱锥A-BCD中,平面ABD⊥平面BCD,两平面的交线为BD,所以CD⊥平面ABD,因此有AB⊥CD,又因为AB⊥AD,且CD∩AD=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC,故选D.答案:D4.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下列结论中不成立的是()A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC解析:如图所示,∵DF∥BC,BC平面PDF,∴BC∥平面PDF.∴A正确;连接AE,PE,则BC⊥AE,BC⊥PE.∵BC∥DF,∴DF⊥AE,DF⊥PE,DF⊥平面PAE,故B正确,又BC⊥平面PAE,∴平面ABC⊥平面PAE.故D正确.答案:C二、填空题(每小题5分,共10分)5.如图,在三棱锥D-ABC中,若AB=BC,AD=CD,E是AC的中点,则平面ADC与平面BDE的关系是________.解析:∵AB=BC,AD=CD,E是AC的中点,∴BE⊥AC,DE⊥AC,∴AC⊥平面BDE,又AC平面ADC,∴平面ADC⊥平面BDE.答案:垂直6.如图,若PA垂直于矩形ABCD所在的平面,则该图中相互垂直的平面有________对.解析:由PA垂直于矩形ABCD所在的平面,知平面PAD⊥平面ABCD和平面PAB⊥平面ABCD;由AB⊥平面PAD,知平面PAB⊥平面PAD;由BC⊥平面PAB,知平面PBC⊥平面PAB;由DC⊥平面PAD,知平面PDC⊥平面PAD.所以题图中相互垂直的平面共有5对.答案:5三、解答题(每小题10分,共20分)7.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.证明:由长方体的性质可知A1B1⊥平面BCC1B1,又BM平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=eq\r(B1C\o\al(2,1)+MC\o\al(2,1))=eq\r(2),同理BM=eq\r(BC2+CM2)=eq\r(2),又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M,因为BM平面ABM,所以平面ABM⊥平面A1B1M.8.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.(1)求证:EF⊥CD;(2)求证:平面SCD⊥平面SCE.证明:(1)连接AC,AF,BF.∵SA⊥平面ABCD,∴AF为Rt△SAC斜边SC上的中线,∴AF=eq\f(1,2)SC.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA⊥平面ABCD,得CB⊥SA,∴CB⊥平面SAB,∴CB⊥SB,∴BF为Rt△SBC斜边SC上的中线,∴BF=eq\f(1,2)SC,∴AF=BF,∴△AFB为等腰三角形.∵E为AB的中点,∴EF⊥AB.又CD∥AB,∴EF⊥CD.(2)由已知易得Rt△SAE≌Rt△CBE,∴SE=EC,即△SEC是等腰三角形,∴EF⊥SC.又∵SC∩CD=C,EF⊥CD,∴EF⊥平面SCD.又EF平面SCE,∴平面SCD⊥平面SCE.eq\x(尖子生题库)☆☆☆9.(10分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.解析:(1)证明:由AB是圆的直径,得AC⊥BC.由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PBC⊥平面PAC.(2)如图,过C作CM⊥AB于M,因为PA⊥平面ABC,CM⊂平面ABC,所以PA⊥CM.又因为PA∩AB=A,且PA⊂平面PAB,AB⊂平面PAB,所以CM⊥平面PAB.过M作MN⊥PB于N,连接NC,易证CN⊥PB,所以∠CNM为二面角C-PB-A的平面角.在Rt△ABC中,由AB=2,AC=1,得BC=eq\r(3),CM=eq\f(\r(3),2),BM=eq\f(3,2).在Rt△PAB中,由AB=2,PA=1,得PB=eq\r(5).因为Rt△BNM∽Rt△BAP,所以eq\f(MN,1)=eq\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论